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1 Introduction

1.1 Scope

This GASNet specification describes a network-independent and language-independent high-performance commu-
nication interface intended for use in implementing the runtime system for global address space languages (such
as UPC or Titanium). GASNet stands for "Global-Address Space Networking".

1.2 Organization
The interface is divided into 2 layers - the GASNet core API and the GASNet extended API:

e The extended API is a richly expressive and flexible interface that provides medium and high-level operations
on remote memory and collective operations (basically anything that we could imagine being implemented
using hardware support on some NIC’s).

e The core API is a narrow interface based on the Active Messages paradigm, which is general enough to
implement everything in the extended APIL.

The core API is the minimum interface that must be implemented on each network when porting to a new
system, and we provide a network-independent reference implementation of the extended API which is written
purely in terms of the core API to ease porting and quick prototyping. Implementors for NIC’s that provide some
hardware support for higher-level messaging operations (e.g. support for servicing remote reads/writes on the NIC
without involving the main CPU) are encouraged to also implement an appropriate subset of the extended API
directly on the network of interest (bypassing the core API) to achieve maximal performance for those operations
(but this is an optimization and is not required to have a working system). Most clients will use calls to the extended
APIT functions to implement the bulk of their communication work (thereby ensuring optimal performance across
platforms). However the client is also permitted to use the core active message interface to implement non-trivial
language-specific or compiler-specific communication operations which would not be appropriate in a language-
independent API (e.g. implementing distributed language-level locks, distributed garbage collection, collective
memory allocation, etc.).

Note the extended API interface is meant primarily as a low-level compilation target, not a library for hand-
written code - as such, the goals of expressiveness and performance generally take precedence over readability and
minimality.

1.3 Conventions

e All GASNet entry points are lower-case identifiers with the prefix gasnet_
e All constants are upper-case and preceded with the prefix GASNET_
e Clients access the GASNet interface by including the header ‘gasnet.h’ and linking the appropriate library

e Except where otherwise noted, any of the operations in the GASNet interface could be implemented using
macros or inline functions in an actual implementation - they are specified using function declaration syntax
below to make the types clear, and all correct client code must type check using the definitions below. In
no case should client code assume it can create a "function pointer" to any of these operations, or invoke
operations having void return type from within expression context. Any macro implementations will ensure
that arguments are evaluated exactly once.

e Implementation-specific values in declarations are indicated using "?777"

e Sections marked "Implementor’s note" are recommendations to implementors and are not part of the speci-
fication
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1.4 Definitions

e node - An OS-level process which returns from gasnet_init(), and its associated local memory space and
system resources. The basic unit of control when interfacing with GASNet.

e thread - A single thread of control within a GASNet node, which possibly shares a virtual memory space
and OS-level process-id with other threads in the node. Clients which may concurrently call GASNet from
more than a single thread must compile to the multi-threaded version of the GASNet library. Except where
otherwise noted, GASNet makes no distinction between the threads within a multi-threaded node, and all
control functions (e.g. barriers) should be executed by a single thread on the node on behalf of all local
threads.

e job - The collection of nodes making up a parallel execution environment. Nodes often correspond to physical,
architectural units, but this need not be the case (e.g. nodes may share a physical CPU/memory/NIC in
multiprogrammed systems with sufficient sharable resources - note that some GASNet implementations may
limit the number nodes which can run concurrently on a single system based on the number of physical
network interfaces)

1.5 Configuration of GASNet

Client code must #define exactly one of GASNET_PAR, GASNET_PARSYNC or GASNET_SEQ when compiling the GAS-
Net library and the client code (before including ‘gasnet.h’) to indicate the threading environment.

GASNET_PAR
The most general configuration. Indicates a fully multi-threaded and thread-safe environment - the
client may call GASNet concurrently from more than one thread. The exact threading system in use
is system-specific, although for obvious reasons both GASNet and the client code must agree on the
threading system - unless otherwise noted, the default mechanism is POSIX threads.

GASNET_PARSYNC
Indicates a multi-threaded but non-concurrent (non- threadsafe) GASNet environment, where multiple
client threads may call GASNet, but their accesses to GASNet are fully serialized (e.g. by some level
of synchronization above the GASNet interface). GASNet may safely assume that it will never be
called from more than one client thread concurrently (and the client must ensure this property holds).
Client code must still use GASNet No-Interrupt Sections and Handler-Safe Locks to ensure correct
operation.

GASNET_SEQ
Indicates a single-threaded, non-threadsafe environment. GASNet may safely assume that it will only
ever be called from one unique client thread. Client code must still use GASNet No-Interrupt Sections
and Handler-Safe Locks to ensure correct operation.

( N
Implementor’s Note:

e We may be able to make GASNet implementations independent of the threading system by having the client
provide a few callback functions (e.g. mutex create/lock/unlock, thread create, threadid query and thread-
local- data set/get)

e change the name of gasnet_init based on which mode is selected to ensure correct version is linked

e An implementation of GASNET_PAR is sufficient to handle all the configurations - the other configurations just
permit certain useful optimizations (such as removing unnecessary locking in the library)

e Interrupt-driven implementations of GASNET_SEQ and GASNET_PARSYNC using signals must be prepared to
handle the case where the thread responding to the signal may not be the thread currently inside a GASNet
call. They may also need to use a private lock during HSL release to prevent multiple threads from polling
simultaneously

- J
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1.6 Errors

Many GASNet core functions return 0 on success (GASNET_0K), or else they return errors from the following list,
as specified by each function:

GASNET_OK = 0 (no error)
GASNET_ERR_RESOURCE
GASNET_ERR_BAD_ARG
GASNET_ERR_NOT_INIT
GASNET_ERR_BARRIER_MISMATCH
GASNET_ERR_NOT_READY

Except where otherwise noted, errors that occur during a call to the extended API are fatal.

Many of the core API functions will return GASNET_ERR_RESOURCE to indicate a generic failure in the hardware
or communications system, GASNET_ERR_BAD_ARG to indicate an illegal client argument, or GASNET_ERR_NOT_INIT
to indicate that gasnet_attach() has not been called.

If any node of a GASNet job crashes, aborts, or suffers a fatal hardware error, GASNet should make every
attempt to ensure that the remaining nodes of the job are terminated in a timely manner to prevent creation of
orphaned processes.

1.6.1 gasnet_ErrorName, gasnet_ErrorDesc

const char * gasnet_ErrorName (int errval)

const char * gasnet_ErrorDesc (int errval)
gasnet_ErrorName() and gasnet_ErrorDesc() convert the GASNet error number errval into a string
containing the name or description (respectively) of the given error number. The client must not modify
the string returned.

1.7 GASNet Types

gasnet_node_t
unsigned integer type representing a unique 0-based node index

gasnet_handle_t
an opaque type representing a non-blocking operation in-progress initiated using the extended API

gasnet_handler_t
an unsigned integer type representing an index into the core API AM handler table

gasnet_handlerarg_t
a 32-bit signed integer type which is used to express the user-provided arguments to all AM handlers.
Platforms lacking a native 32-bit type may define this to a 64-bit type, but only the lower 32-bits are
transmitted during an AM message send (and sign-extended on the receiver).

gasnet_token_t
an opaque type passed to core API handlers which may be used to query message information

gasnet_register_value_t
the largest unsigned integer type that can fit entirely in a single CPU register for the current archi-
tecture and ABI. SIZEOF_GASNET_REGISTER_VALUE_T is a preprocess-time literal integer constant (i.e.
not sizeof ()) indicating the size of this type in bytes

gasnet_handlerentry_t
struct type used to negotiate handler registration in gasnet_attach()



Chapter 1: Introduction GASNet Specification, Version 1.8.1 4

1.8 Compile-time constants

GASNET_SPEC_VERSION_MAJOR

GASNET_SPEC_VERSION_MINOR
Integral values corresponding to the major and minor version numbers of the GASNet specification
version adhered to by a particular implementation. The minor version is incremented whenever new
functionality is added to the specification without breaking backward compatibility. The major version
is incremented whenever specification changes require breaking backward compatibility. The title page
of this document provides the specification version corresponding to this version of the specification.

GASNET_RELEASE_VERSION_MAJOR

GASNET_RELEASE_VERSION_MINOR

GASNET_RELEASE_VERSION_PATCH
Integral values corresponding to the major, minor and patch version numbers of the release identifiers
corresponding to the packaging on an implementation of GASNet. The significance of these values is
implementation-defined.

GASNET_VERSION (deprecated)
equivalent to GASNET_SPEC_VERSION_MAJOR

GASNET_CONFIG_STRING
a string representing any of the relevant GASNet compile-time configuration settings that can be
compared using string compare to verify version compatibility. The string is also embedded into the

library itself such that it can be scanned for within a binary executable which is statically linked with
GASNet.

GASNET_MAXNODES
an integer representing the maximum number of nodes supported in a single GASNet job. This value
must be representable as a gasnet_node_t.

GASNET_ALIGNED_SEGMENTS
defined by the GASNet implementation to the value 1 if gasnet_attach() guarantees that the remote-
access memory segment will be aligned at the same virtual address on all nodes. Defined to 0 otherwise.

GASNET_PAGESIZE
a preprocessor constant integer which provides the memory granularity size used for various GASNet
parameters which are required to be page-aligned. On many systems this will be the system page size.

1.9 General notes

e All GASNet functions (in the extended and core API) support loopback (i.e. a node sending a get or active
message to itself), and all functions will still work in the case of single-node jobs (e.g. barriers are basically
no-ops in that case)

e GASNet will ensure that stdout/stderr are correctly propagated in a system-specific way (e.g. to the spawning
console or possibly to a file or set of files). No guarantees are made about propagation of stdin, although some
implementations may choose to deal with this.

e GASNet makes no guarantees about the propagation of external signals across a job - however, see comments
in gasnet_exit
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2 Core API

The core API consists of:
e A job control interface for bootstrapping, job termination and job environment queries
e The active messaging interface for implementing requests, replies and handlers

e An interface which provides handler signal-safety and atomicity control (No-Interrupt Sections and Handler-
Safe Locks)

2.1 Job Control Interface

Job startup in GASNet is a two-step process. GASNet programs should start by calling gasnet_init() as the first
statement in their main() function, which bootstraps the nodes and establishes command-line arguments and the
job environment. All nodes then call the gasnet_attach() function to initialize the network and register shared
memory segments.

GASNet initialization may register some UNIX signal handlers (e.g. to support interrupt-based implementations
or aggressive segment registration policies). Client code which registers signal handlers must be careful not to
preempt any GASNet-registered signal handlers (even for seemingly fatal signals such as SIGABRT) - the only signal
which the client may always safely catch is SIGQUIT.

Any GASNet library implementation can be built in one of the following three configurations, which affects
the behavior of remote-access memory segment registration during gasnet_attach(). The gasnet.h header file will
define the appropriate preprocessor symbol to indicate which configuration is active.

GASNET_SEGMENT_FAST
The remote-access memory segment is limited to an implementation-defined "reasonable" size, and
optimized in an implementation-specific way to provide the fastest possible remote accesses. The
maximum segment size may be queried using gasnet_getMaxLocalSegmentSize ().

GASNET_SEGMENT_LARGE
This configuration allows clients with larger shared data requirements to register a larger remote-
access memory segment, possibly at some cost in the efficiency of remote accesses. The maximum
segment size may be queried using gasnet_getMaxLocalSegmentSize (), and should be comparable
to the maximum total data size allowed for processes on the given system.

GASNET_SEGMENT_EVERYTHING
The entire virtual memory space of each process is made available for remote access, in a way such
that any memory access that would succeed when executed locally by this node would also succeed if
executed by other nodes remotely. This can be used by clients which need to make the entire memory
heap, stack and static data areas available for remote access.

( N
Implementor’s Note:
e The maximum segment size for GASNET_SEGMENT_FAST on many implementations is likely to to be limited
by factors such as the amount of pinnable physical memory currently available in the system, and the access
range of the NIC hardware.

e GASNET_SEGMENT_EVERYTHING support can trivially be provided by implementing all the remote-access op-
erations and long AM messages using core API medium messages, such that all data accesses are actually
executed by the local host processor. However, implementors are encouraged to investigate higher-performance
alternatives whenever possible.

e On systems requiring pinned segments, GASNET_SEGMENT_LARGE can be implemented using dynamic pinning
schemes (possibly with caching to amortize rendezvous and pinning costs) or combinations of direct remote
accesses and AM-based accesses.

N J
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2.1.1 gasnet_init

int gasnet_init (int *argc, char ***argv)
Bootstraps a GASNet job and performs any system-specific setup required.

Called by all GASNet-based applications upon startup to bootstrap the nodes, before any other processing
takes place. Must be called before any calls to any other functions in this specification, and before any
investigation of the command-line parameters passed to the program in arge/argv, which may be modified
or augmented by this call. The semantics of any code executing before the call to gasnet_init() is
implementation-specific (for example, it is undefined whether stdin/stdout/stderr are functional, or even
how many nodes will run that code).

Upon return from gasnet_init (), all the nodes of the job will be running, stdout/stderr will be functional,
and the basic job environment will be established, however the primary network resources may not yet have
been initialized. The following GASNet functions are the only ones that may be called between gasnet_
init () and gasnet_attach():

gasnet_mynode ()

gasnet_nodes ()
gasnet_getMaxLocalSegmentSize ()
gasnet_getMaxGlobalSegmentSize ()
gasnet_getenv ()

gasnet_exit ()

All other GASNet calls are prohibited until after a successful gasnet_attach().

gasnet_init () may fail with a fatal error and implementation-defined message if the nodes of the job cannot
be successfully bootstrapped. It also may return an error code such as GASNET_ERR_RESOURCE to indicate
there was a problem acquiring network or system resources. Otherwise, it returns GASNET_OX to indicate
success. May only be called once during a process lifetime, subsequent calls will return an error.

2.1.2 gasnet_attach

typedef struct {
gasnet_handler_t index; // == 0 for don’t care
void (xfnptr) ();

} gasnet_handlerentry_t;

int gasnet_attach (gasnet_handlerentry_t *table, int numentries,
uintptr_t segsize, uintptr-t minheapoffset)
Initializes the GASNet network system and performs any system-specific setup required.

table is an array of numentries gasnet_handlerentry_t elements used for registering active-message handlers
provided by the client code. Clients that never explicitly call the active-message request functions in the
core API need not register any handlers, and may pass a NULL pointer for table. Clients wishing to register
some handlers should fill in table with function pointers and the desired handler index (or index 0 for "don’t-
care") - note that handlers 0..127 are reserved for GASNet internal use, and handlers 128..255 are available
for client-provided handlers. Once gasnet_attach() returns, any "don’t care" handler indexes in the table
will be modified in place to reflect the handler index assigned for each handler - the assignment algorithm is
deterministic: passing the same handler table on each node will guarantee an identical resulting assignment
on each node. Handler function prototypes should match the prototypes described in the Active Message
Interface section.

segsize and minheapoffset are used to communicate the desired size and location of the remote-access memory
data segment for the local node that will be used for all remote accesses (i.e. using the data transfer functions
of the extended API) or as the target of any Long active-messages in the core API. The client passes the
desired size of this area in bytes as segsize, which must be a multiple of GASNET_PAGESIZE, and should be
less than or equal to the value returned by gasnet_getMaxLocalSegmentSize(). minheapoffset specifies
the minimum amount of virtual memory space (in bytes) to leave between the end of the current memory
heap and the beginning of the remote-access memory segment (on some systems the size of this offset may
limit the total future growth of the local memory heap, on other systems it may be irrelevant). All nodes
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are required to pass the same value for minheapoffset. Note that specifying a large minheapoffset may
limit the possible size of the remote-access segment on some systems. Passing a segsize of zero disables the
remote-access segment for this node, meaning other nodes cannot access it with remote-memory operations
and this node cannot be the target of any Long AM messages.

GASNet will attempt to place the data segment in an area of the virtual memory space whose pages are
currently unused (e.g. by calling mmap). The actual remote-access segment size achieved may be less than
segsize if insufficient system resources are available - the exact size and location of the segment for all nodes
should be queried after attach using gasnet_getSegmentInfo(). The segment assignment is guaranteed to
have a GASNET_PAGESIZE-aligned base address and size, but may differ in size across nodes, according to the
requested segment sizes and system resource availability. GASNet will not initialize data within the memory
segment in any way, nor will it attempt to access the memory locations within the segment until directed
to do so by a data transfer function or Long active message.

If the GASNet implementation defines the macro GASNET_ALIGNED_SEGMENTS to 1, then gasnet_attach()
guarantees that the base of the remote-access memory segment will be aligned at the same virtual address
across all nodes (and will fail if it cannot provide this). Otherwise, this guarantee is not provided. Note the
segment sizes may still differ across nodes, based on segsize and system resource availability.

In the GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE configurations, GASNet guarantees that data
transfer functions, Long active messages and local accesses referencing memory locations in the remote-
access memory segment will succeed, even before any local activity takes place on those pages (i.e. in an
implementation performing lazy registration, first touch = allocate).

segsize and minheapoffset are ignored in the GASNET_SEGMENT_EVERYTHING configuration, as the entire
virtual memory space is implicitly shared for remote access. Under this configuration, it is the client’s
responsibility to ensure that any remote-memory references fall within the legal areas of the current heap
and data segment for the target node - remote accesses or Long active messages to locations outside these
areas will have undefined effects (for example, they may cause a segmentation fault on the target node).

gasnet_attach() may fail with a fatal error and implementation-defined message if the network cannot be
successfully initialized. It also may return an error code such as GASNET_ERR_RESOURCE to indicate there
was a problem acquiring network or system resources. Otherwise, it returns GASNET_OK to indicate success.

A successful call acts as a global barrier and blocks until all other nodes which are part of this parallel job
have successfully called gasnet_attach(). May only be called once during a process lifetime, subsequent
calls will return an error.

Implementor’s Note:

e In the GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE configurations, GASNet must take steps to en-
sure the pages in the segment have been properly registered for remote access in a system-specific and
implementation-specific way (e.g. mmapping them so they get added to the process page table, pinning
the pages, registering the physical address with the NIC, etc.). Implementations are encouraged to defer
consuming physical memory or swap space resources for pages in the segment until the first actual reference
to them.

e Every implementation that pins pages needs a strategy for handling remote accesses under the GASNET_
SEGMENT_LARGE and GASNET_SEGMENT_EVERYTHING configurations when the segment size exceeds the amount
of pinnable pages - e.g. some implementations may dynamically pin pages, others may pin only a portion of
the segment and use an extra copy to handle access to data outside the pinned region.

e Some GASNet implementations may need to allocate and pin additional memory for their own internal use
in messaging (e.g. send buffers), but such memory should not fall within the client’s data segment under
GASNET_SEGMENT_FAST and GASNET_SEGMENT_LARGE (although it may be adjacent to it).

e Some GASNet implementations may also choose to pin other pages to optimize access and remove extra copies
- for example, pinning the program stack may be advisable on some systems since a large number of the data
transfer functions in the extended API are likely to use stack locations as the local source/destination.
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2.1.3 gasnet_getMaxLocalSegmentSize

uintptr_t gasnet_getMaxLocalSegmentSize ()
Retrieve an approximate, optimistic maximum size in bytes for the remote-access memory segment that may
be provided to gasnet_attach() under the current configuration.

The return value of this function may depend on current system resource usage, and may return different
values on different nodes of a job, according to current system utilization. The value returned will always
be a multiple of GASNET_PAGESIZE.

The value returned is an optimistic approximation of the segment size which can be acquired by gasnet_
attach() - the actual size achieved can be queried after attach using gasnet_getSegmentInfo().

On many implementations, this function will return different values in the GASNET_SEGMENT_FAST and
GASNET_SEGMENT_LARGE configurations. Under the GASNET_SEGMENT_EVERYTHING configuration, this func-
tion returns -1.

This function has undefined behavior after gasnet_attach().
2.1.4 gasnet_getMaxGlobalSegmentSize

uintptr_t gasnet_getMaxGlobalSegmentSize ()
Returns a global minimum value that would be returned by a call to gasnet_getMaxLocalSegmentSize on
any node of the current job (i.e. the smallest max segment size estimated for any node in the job).

This function has undefined behavior after gasnet_attach().
2.1.5 gasnet_exit

void gasnet_exit (int exitcode)

Terminate the current GASNet job and return the given exitcode to the console which invoked the job (in
a system-specific way). This call is not a collective operation, meaning any node may call it at any time
after initialization. It causes the system to flush all I/O, release all resources and terminate the job for all
active nodes. If several nodes and/or threads call it simultaneously with different exit codes within a given
synchronization phase, the result provided to the console will be one of the provided exit codes (chosen
arbitrarily). This function should be called at the end of main() after a barrier to ensure proper system
exit, and should also be called in the event of any fatal errors. GASNet clients are encouraged to call
gasnet_exit () before explicitly exiting (by calling exit (), abort()) to reduce the possibility and lifetime
of orphaned nodes, but this is not required.

GASNet will send a SIGQUIT signal to the node if it detects that a remote node has called gasnet_exit or
crashed (in which case the node should catch the signal, perform any system-specific shutdown, then call
gasnet_exit() to end the local node process). GASNet will also send a SIGQUIT signal if it detects that
the job has received a different catchable terminate-the-program signal (e.g. SIGTERM, SIGINT) since some
of these other signals may be meaningful (and non-fatal) to certain GASNet implementations.

2.2 Job Environment Queries

2.2.1 gasnet_mynode

gasnet_node_t gasnet_mynode ()
returns the unique, 0-based node index representing this node in the current GASNet job

2.2.2 gasnet_nodes

gasnet_node_t gasnet_nodes ()
returns the number of nodes in the current GASNet job
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2.2.3 gasnet_getSegmentInfo

typedef struct {
void *addr;
uintptr_t size;

} gasnet_seginfo_t;

int gasnet_getSegmentInfo (gasnet_seginfo_t *seginfo_table, int numentries)
Query the segment base addresses and sizes for all the nodes in the job. seginfo_table is an array of gasnet_
seginfo_t (and numentries is the number of entries in the table). GASNet fills in the table with the
remote-access segment base address and size in bytes for each node whose index is less than numentries.
The value of numentries is usually equal to gasnet_nodes(), but is permitted to be greater (in which case
higher array entries are left untouched) or less (in which case the higher-numbered nodes are not reported).
This is a non-collective operation. Returns GASNET_OK on success.

Note that when GASNET_ALIGNED_SEGMENTS=1, the base addresses are guaranteed to be equal (i.e.
all remote-access segments start at the same virtual addresses). However, in any case the segment sizes may
differ across nodes, and specifically they may differ from the size requested by the client in the gasnet_
attach() size hint.

2.2.4 gasnet_getenv

char * gasnet_getenv (const char *name)
Has the same semantics as the POSIX getenv () call, except it queries the system-specific environment which
was used to spawn the job (e.g. the environment of the spawning console). Calling POSIX getenv () directly
on some implementations may not correctly return values reflecting the environment that initiated the job
spawn, consequently GASNet clients wishing to query a consistent snapshot of the spawning environment
across nodes should never call getenv() directly. The semantics of POSIX setenv() are undefined in
GASNet jobs (specifically, it will probably fail to propagate changes across nodes).

2.3 Active Messaging Interface

Active message communication is formulated as logically matching request and reply operations. Upon receipt of
a request message, a request handler is invoked; likewise, when a reply message is received, the reply handler is
invoked. Request handlers can reply at most once to the requesting node. If no explicit reply is made, the layer
may generate one (to an implicit do-nothing reply handler). Thus a request handler can call reply at most once,
and may only reply to the requesting node. Reply handlers cannot request or reply.

Here is a high-level description of a typical active message exchange between two nodes, A and B:

1. A calls gasnet_AMRequest*() to send a request to B. The call includes arguments, data payload, the node
index of B and the index of the request handler to run on B when the request arrives

2. At some later time, B receives the request, and runs the appropriate request handler with the arguments
and data (if any) provided in the gasnet_AMRequest*() call. The request handler does some work on the
arguments, and usually finishes by calling gasnet _AMReply* () to issue a reply message before it exits (replying
is optional in GASNet, but required in AM2 - if the request handler does not reply then no further actions are
taken). gasnet_AMReply* () takes the token passed to the request handler, arguments and data payload, and
the index of the reply handler to run when the reply message arrives. It does not take a node index because
a request handler is only permitted to send a reply to the requesting node

3. At some later time, A receives the reply message from B and runs the appropriate reply handler, with the
arguments and data (if any) provided in the gasnet_AMReply* () call. The reply handler does some work on
the arguments and then exits. It is not permitted to send further messages.

The message layer will deliver requests and replies to destination nodes barring any catastrophic errors (e.g.
node crashes). From a sender’s point of view, the request and reply functions block until the message is sent. A
message is defined to be sent once it is safe for the caller to reuse the storage (registers or memory) containing
the message (one notable exception to this policy is gasnet_RequestLongAsyncM()). In implementations which
copy or buffer messages for transmission, the definition still holds: message sent means the layer has copied the
message and promises to deliver the copy with its "best effort", and the original message storage may be reused.
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By best effort, the message layer promises it will take care of all the details necessary to transmit the message.
These details include any retransmission attempts and buffering issues on unreliable networks.

However, in either case, sent does not imply received. Once control returns from a request or reply function,
clients cannot assume that the message has been received and handled at the destination. The message layer only
guarantees that if a request or reply is sent, and, if the receiver occasionally polls for arriving messages, then
the message will eventually be received and handled. From a receiver’s point of view, a message is defined to be
received only once its handler function is invoked. The contents of partially received messages and messages whose
handlers have not executed are undefined.

If the client sends an AM request or AM reply to a handler index which has not been registered on the destination
node, GASNet will print an implementation-defined error message and terminate the job. It is implementation-
defined whether this checking happens on the sending or receiving node.

2.3.1 Active Message Categories

There are three categories of active messages:

‘Short Active Message’
These messages carry only a few integer arguments (up to gasnet_AMMaxArgs())
handler prototype:

void handler(gasnet_token_t token,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

‘Medium Active Message’
In addition to integer arguments, these messages can can carry an opaque data payload (up to gasnet_
AMMaxMedium() bytes in length), that will be made available to the handler when it is run on the remote
node.
handler prototype:

void handler(gasnet_token_t token,
void *buf, size_t nbytes,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

‘Long Active Message’
In addition to integer arguments, these messages can carry an opaque data payload (up to gasnet_
AMMaxLong{Request,Reply} () bytes in length) which is destined for a particular predetermined ad-
dress in the segment of the remote node (often implemented using RDMA hardware assistance)
handler prototype:

void handler(gasnet_token_t token,
void *buf, size_t nbytes,
gasnet_handlerarg_t arg0O, ... gasnet_handlerarg t argM-1);

For more discussion on these three categories, see the Appendix.

The number of handler arguments (M) is specified upon issuing a request or reply by choosing the request /reply
function of the appropriate name. The category of message and value of M used in the request/reply message
sends determines the appropriate handler prototype, as detailed above. If a request or reply is sent to a handler
whose prototype does not match the requirements as detailed above, the result is undefined.

Implementor’s Note:

e Some implementations may choose to optimize medium and long messages for payloads whose base address
and length are aligned with certain convenient sizes (word-aligned, doubleword-aligned, page-aligned etc.)
but this does not affect correctness.
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2.3.2 Active Message Size Limits

These functions are used to query the maximum size messages of each category supported by a given implemen-
tation. These are likely to be implemented as macros for efficiency of client code which uses them (within packing
loops, etc.)

2.3.2.1 gasnet_AMMaxArgs

size_t gasnet_AMMaxArgs ()
Returns the maximum number of handler arguments (i.e. M) that may be passed with any AM request or
reply function. This value is guaranteed to be at least (2 * MAX(sizeof (int),sizeof (void*))) (i.e. 8 for
32-bit systems, 16 for 64-bit systems), which ensures that 8 ints and/or pointers can be sent with any active
message. All implementations must support all values of M from 0...gasnet_AMMaxArgs().

2.3.2.2 gasnet_ AMMaxMedium

size_t gasnet_AMMaxMedium ()
Returns the maximum number of bytes that can be sent in the payload of a single medium AM request or
reply. This value is guaranteed to be at least 512 bytes on any implementation.

2.3.2.3 gasnet_AMMaxLongRequest

size_t gasnet_AMMaxLongRequest ()
Returns the maximum number of bytes that can be sent in the payload of a single long AM request. This
value is guaranteed to be at least 512 bytes on any implementation. Implementations which use RDMA to
implement long messages are likely to support a much larger value.

2.3.2.4 gasnet_AMMaxLongReply

size_t gasnet_AMMaxLongReply ()
Returns the maximum number of bytes that can be sent in the payload of a single long AM reply. This
value is guaranteed to be at least 512 bytes on any implementation. Implementations which use RDMA to
implement long messages are likely to support a much larger value.

2.3.3 Active Message Request Functions

In the function descriptions below, M is to be replaced with a number in [0 ... gasnet_AMMaxArgs ()]
2.3.3.1 gasnet_AMRequestShortM

int gasnet_AMRequestShortM ( gasnet_node_t dest, gasnet_handler_t handler,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1);
Send a short AM request to node dest, to run the handler registered on the destination node at handler
table index handler, with the given M arguments. gasnet_AMRequestShortM returns control to the calling
thread of computation after sending the request message. Upon receipt, the receiver invokes the appropriate
active message request handler function with the M integer arguments. Returns GASNET_OK on success.

2.3.3.2 gasnet_AMRequestMediumM

int gasnet_AMRequestMediumM ( gasnet_node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1 )
Send a medium AM request to node dest, to run the handler registered on the destination node at handler
table index handler, with the given M arguments.

The message also carries a data payload copied from the local node’s memory space as indicated by
source_addr and nbytes (which need not fall within the registered data segment on the local node). The
value of nbytes must be no larger than the value returned by gasnet_AMMaxMedium(), and is permitted to
be zero (in which case source_addr is ignored and the buf value passed to the handler is undefined).



Chapter 2: Core API GASNet Specification, Version 1.8.1 12

gasnet_AMRequestMediumM returns control to the calling thread of computation after sending the associated
request, and the source memory may be freely modified once the function returns. The active message is
logically delivered after the data transfer finishes.

Upon receipt, the receiver invokes the appropriate request handler function with a pointer to temporary
storage containing the data payload (in a buffer which is suitably aligned to hold any datatype), the number
of data bytes transferred, and the M integer arguments. The dynamic scope of the storage is the same as
the dynamic scope of the handler. The data should be copied if it is needed beyond this scope. Returns
GASNET_OK on success.

2.3.3.3 gasnet_AMRequestLongM

int gasnet_AMRequestLongM ( gasnet-node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes, void *dest_addr,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1);
Send a long AM request to node dest, to run the handler registered on the destination node at handler table
index handler, with the given M arguments.

The message also carries a data payload copied from the local node’s memory space as indicated by
source_addr and nbytes (which need not fall within the registered data segment on the local node). The
value of nbytes must be no larger than the value returned by gasnet_AMMaxLongRequest (), and is permit-
ted to be zero (in which case source_addr is ignored and the buf value passed to the handler is undefined).
The memory specified by [dest_addr...(dest_addr+nbytes-1)] must fall entirely within the memory segment
registered for remote access by the destination node. This area will receive the data transfer before the
handler runs.

If the source and destination memory overlap (e.g. in a loopback message), the result is undefined. gasnet_
AMRequestLongM returns control to the calling thread of computation after sending the associated request,
and the source memory may be freely modified once the function returns. The active message is logically
delivered after the bulk transfer finishes. Upon receipt, the receiver invokes the appropriate request handler
function with a pointer into the memory segment where the data was placed, the number of data bytes
transferred, and the M integer arguments. Returns GASNET_OK on success.

2.3.3.4 gasnet_AMRequestLongAsyncM

int gasnet_AMRequestLongAsyncM ( gasnet_node_t dest, gasnet_handler_t handler,
void *source_addr, size_t nbytes, void *dest_addr,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1 );
gasnet_AMRequestLongAsyncM() has identical semantics to gasnet_AMRequestLongM(), except that the
handler is required to send an AM reply and the data payload source memory must NOT be modified
until this matching reply handler has begun execution. Some implementations may leverage this additional
constraint to provide higher performance (e.g. by reducing extra data copying).

Implementor’s Note:

e Note that unlike the AM2.0 function of similar name, this function is permitted to block temporarily if the
network is unable to immediately accept the new request.
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2.3.4 Active Message Reply Functions

The following active message reply functions may only be called from the context of a running active message
request handler, and a reply function may be called at most once from any given request handler (it is an error
to do otherwise). The request and reply categories need not match (e.g. a short AM request handler may send a
long AM reply).

2.3.4.1 gasnet_AMReplyShortM

int gasnet_AMReplyShortM ( gasnet_token_t token, gasnet_handler_t handler,
gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1);
Send a short AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), and include the given M arguments. gasnet_AMReplyShortM
returns control to the calling thread of computation after sending the reply message.

Upon receipt, the receiver invokes the appropriate active message reply handler function with the M integer
arguments. Returns GASNET_OK on success.

2.3.4.2 gasnet_AMReplyMediumM

int gasnet_AMReplyMediumM ( gasnet_token_t token, gasnet_handler_t handler,

void *source_addr, size_t nbytes,

gasnet_handlerarg_t arg0, ..., gasnet_handlerarg_t argM-1 );
Send a medium AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), with the given M arguments and given data payload copied
from the local node’s memory space (source_addr need not fall within the registered data segment on the
local node). The value of nbytes must be no larger than the value returned by gasnet_AMMaxMedium(),
and is permitted to be zero (in which case source_addr is ignored and the buf value passed to the handler
is undefined). gasnet_AMReplyMediumM returns control to the calling thread of computation after sending
the associated reply, and the source memory may be freely modified once the function returns. The active
message is logically delivered after the data transfer finishes.

Upon receipt, the receiver invokes the appropriate reply handler function with a pointer to temporary
storage containing the data payload, the number of data bytes transferred, and the M integer arguments.
The dynamic scope of the storage is the same as the dynamic scope of the handler. The data should be
copied if it is needed beyond this scope. Returns GASNET_OK on success.

2.3.4.3 gasnet_AMReplyLongM

int gasnet_AMReplyLongM ( gasnet_token_t token, gasnet_handler_t handler,

void *source_addr, size_t nbytes, void *dest_addr,

gasnet_handlerarg_t argO, ..., gasnet_handlerarg_t argM-1);
Send a long AM reply to the indicated handler on the requesting node (i.e. the node responsible for this
particular invocation of the request handler), with the given M arguments and given data payload copied
from the local node’s memory space (source_addr need not fall within the registered data segment on the
local node). The value of nbytes must be no larger than the value returned by gasnet_AMMaxLongReply(),
and is permitted to be zero (in which case source_addr is ignored and the buf value passed to the handler
is undefined). The memory specified by [dest_addr...(dest_addr+nbytes-1)] must fall entirely within the
memory segment registered for remote access by the destination node. If the source and destination memory
overlap (e.g. in a loopback message), the result is undefined. gasnet_AMReplyLongM returns control to
the calling thread of computation after sending the associated reply, and the source memory may be freely
modified once the function returns. The active message is logically delivered after the bulk transfer finishes.

Upon receipt, the receiver invokes the appropriate reply handler function with a pointer into the memory
segment where the data was placed, the number of data bytes transferred, and the M integer arguments.
Returns GASNET_QOK on success.
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2.3.5 Misc. Active Message Functions
2.3.5.1 gasnet_AMPoll

int gasnet_AMPoll ()
An explicit call to service the network, process pending messages and run handlers as appropriate. Most of
the message-sending primitives in GASNet poll the network implicitly. Purely polling-based implementations
of GASNet may require occasional calls to this function to ensure progress of remote nodes during compute-
only loops. Any client code which spin-waits for the arrival of a message should call this function within
the spin loop to optimize response time. This call may be a no-op on some implementations (e.g. purely
interrupt-based implementations). Returns GASNET_OK unless an error condition was detected.

2.3.5.2 GASNET_BLOCKUNTIL
#define GASNET_BLOCKUNTIL(cond) 7?77

This is a macro which implements a busy-wait/blocking polling loop in the way most efficient for the current
GASNet core implementation. The macro blocks execution of the current thread and services the network until
the provided condition becomes true. cond is an arbitrary C expression which will be evaluated by the macro one
or more times as active messages arrive until the condition evaluates to a non-zero value. cond is an expression
whose value is altered by the execution of an AM handler which the client thread is waiting for - GASNet may
safely assume that the value of cond will only change while an AM handler is executing.

Example usage:

int doneflag = O;
gasnet_AMRequestShort1(..., &doneflag); // reply handler sets doneflag to 1
GASNET_BLOCKUNTIL(doneflag == 1);

Note that code like this would be illegal and could cause node 0 to sleep forever:

static int doneflag = 0;
node O: node 1:
GASNET_BLOCKUNTIL(doneflag == 1); gasnet_put_val(0, &doneflag, 1, sizeof(int));

because gasnet_put_val (and other extended API functions) might not be implemented using AM handlers.
Also note that cond may be evaluated concurrently with handler execution, so the client is responsible for nego-
tiating any atomicity concerns between the cond expression and handlers (for example, protecting both with a
handler-safe lock if the cond expression reads two or more values which are all updated by handlers). Finally, note
that unsynchronized handler code which modifies one or more locations and then performs a flag write to signal
a different thread may need to execute a local memory barrier before the flag write to ensure correct ordering on
non-sequentially-consistent SMP hardware.

e N
Implementor’s Note:

e one trivial implementation: #define GASNET_BLOCKUNTIL (cond) while (!(cond)) gasnet_AMPoll()

e smarter implementations may choose to spin for awhile and then block

e Any implementation that includes blocking must ensure progress if all client threads call GAS-
NET_BLOCKUNTIL(), and must ensure the blocked thread is awakened even if the handler is run
synchronously during a gasnet_AMPol1() call from a different client thread. Other client threads performing
sends or polls must not be prevented from making progress by the blocking thread (possibly a motivation
against the "trivial implementation" above).

- /)

2.3.5.3 gasnet_AMGetMsgSource

int gasnet_AMGetMsgSource (gasnet_token_t token, gasnet_node_t *srcindex)
Can be called by handlers to query the source of the message being handled. The token argument must be
the token passed into the handler on entry. Returns GASNET_OK on success.
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2.4 Atomicity Control

2.4.1 Atomicity semantics of handlers

Handlers may run asynchronously with respect to the main computation (in an implementation which uses inter-
rupts to run some or all handlers), and they may run concurrently with each other on separate threads (e.g. in an
implementation where several threads may be polling the network at once). An implementation using interrupts
may result in handler code running within a signal handler context. Some implementations may even choose to
run handlers on a separate private thread created by GASNet (making handlers asynchronous with respect to all
client threads). Note that polling-based GASNet implementations are likely to poll (and possibly run handlers)
from within any GASNet call (i.e. not just gasnet_AMPoll()). Because of all this, handler code should run
quickly and to completion without making blocking calls, and should not make assumptions about the context in
which it is being run (special care must be taken to ensure safety in a signal handler context, see below).

Regardless, handlers themselves are not interruptible - any given thread will only be running a single AM
handler at a time and will never be interrupted to run another AM handler (there is one exception to this rule -
the gasnet_AMReply* () call in a request handler may cause reply handlers to run synchronously, which may be
necessary to avoid deadlock in some implementations. This should not be a problem since gasnet_AMReply* ()
is often the last action taken by a request handler). Handlers are specifically prohibited from initiating random
network communication to prevent deadlock - request handlers must generate at most one reply (to the requestor)
and make no other communication calls (including polling), and reply handlers may not communicate or poll at
all.

The asynchronous nature of handlers requires two mechanisms to make them safe: a mechanism to ensure
signal safety for GASNet implementations using interrupt-based mechanisms, and a locking mechanism to allow
atomic updates from handlers to data structures shared with the client threads and other handlers.

2.4.2 No-Interrupt Sections - Ensuring signal-safety for handlers

Traditionally, code running in signal handler context is extremely circumscribed in what it can do: e.g. none of
the standard pthreads/System V synchronization calls are on the list of signal-safe functions (for such a list see
POSIX System Interfaces 2.4, IEEE Std 1003.1-2001). Note that even most "thread-safe" libraries will break or
deadlock if called from a signal handler by the same thread currently executing a different call to that library in
an earlier stack frame. One specific case where this is likely to arise in practice is calls to malloc() /free(). To
overcome these limitations, and allow our handlers to be more useful, the normal limitations on signal handlers
will be avoided by allowing the client thread to temporarily disable the network interrupts that run handlers. All
function calls that are not signal-safe and could possibly access state shared by functions also called from handlers
MUST be called within a GASNet "No-Interrupt Section":

2.4.2.1 gasnet_hold_interrupts, gasnet_resume_interrupts

void gasnet_hold_interrupts ()

void gasnet_resume_interrupts ()
gasnet_hold_interrupts() and gasnet_resume_interrupts() are used to define a GASNet No-Interrupt
Section (any code which dynamically executes between the hold and resume calls is said to be "inside"
the No-Interrupt Section). These are likely to be implemented as macros and highly tuned for efficiency.
The hold and resume calls must be paired, and may not be nested recursively or the results are undefined
(this means that clients should be especially careful when calling other functions in the client from within
a No-Interrupt Section). Both calls will return immediately in the common case, although one or both
may cause messages to be serviced on some implementations. GASNet guarantees that no handlers will
run asynchronously on the current thread within the No-Interrupt Section. The no-interrupt state is a
per-thread setting, and GASNet may continue running handlers synchronously or asynchronously on other
client threads or GASNet-private threads (even in a GASNET_SEQ configuration) - specifically, a No-Interrupt
Section does not guarantee atomicity with respect to handler code, it merely provides a way to ensure that
handlers won’t run on a given thread while it’s inside a call to a non-signal-safe library.
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2.4.3 Restrictions on No-Interrupt Sections

There is a strict set of conventions governing the use of No-Interrupt Sections which must be followed in order to
ensure correct operation on all GASNet implementations. Clients which violate any of these rules may be subject
to intermittent crashes, fatal errors or network deadlocks.

e gasnet_hold_interrupts() and gasnet_resume_interrupts() need not be called from within a handler
context - handlers are run within an implicit No-Interrupt Section, and gasnet_hold_interrupts() and
gasnet_resume_interrupts() calls are ignored within a handler context.

e Code in a No-Interrupt Section must not call any GASNet functions that may send requests or synchronously
run handlers - specifically, the only GASNet functions which may legally be called within the No-Interrupt
Section are:

gasnet_mynode(), gasnet_nodes(), gasnet_hsl_x(), gasnet_exit(), gasnet_AMReply*()

Note that due to the previous rule, these are also the only GASNet functions that may legally be called within
a handler context (and gasnet_AMReply*() is only legal in a request handler).

e Code in a No-Interrupt Section must never block or spin-wait for an unbounded amount of time, especially
when awaiting a result produced by a handler. The only exception to this rule is that a thread may call
gasnet_hsl_lock within a No-Interrupt Section (subject to the rules in section see Section 2.4.5 [Restrictions
on Handler-Safe Locks|, page 17).

e No-Interrupt Sections should only be held "briefly" to avoid starving the network (could cause performance
degradation, but should not affect correctness). Very long No-Interrupt Sections (i.e. on the order of 10 sec or
more) could cause some GASNet implementations employing timeout-based mechanisms to fail (e.g. remote
nodes may decide this node is dead and abort the job).

( N
Implementor’s Note:

e One possible implementation: Keep a bit for each thread indicating whether or not a No-Interrupt Section is
in effect, which is checked by all asynchronous signal handlers. If a signal arrives while a No-Interrupt Section
is in effect, a different per-thread bit in memory will be marked indicating a "missed GASNet signal": the
gasnet_resume_interrupts() call will check this bit, and if it is set, the action for the signal will be taken
(the action for a GASNet signal is always to check the queue of incoming network messages, so there’s no
ambiguity on what the signal meant. Since messages are queued, the single ’signal missed’ bit is sufficient
for an arbitrary number of missed signals during a single No-Interrupt Section - GASNet messages will be
removed and processed until the queue is empty).

e Implementation needs to hold a No-Interrupt Section over a thread while running handlers or holding HSL’s

e Strictly polling-based implementations which never interrupt a thread can implement these as a no-op.
N J

2.4.4 Handler-Safe Locks

In order to support handlers atomically updating data structures accessed by the main-line client code and other
handlers, GASNet provides the Handler-Safe Lock (HSL) mechanism. As the name implies, these are a special
kind of lock which are distinguished as being the only type of lock which may be safely acquired from a handler
context. There is also a set of restrictions on their usage which allows this to be safe (see below). All lock-protected
data structures in the client that need to be accessed by handlers should be protected using a Handler-Safe Lock
(i.e. instead of a standard POSIX mutex).

2.4.4.1 gasnet_hsl_t

gasnet_hsl_t is an opaque type representing a Handler-Safe Lock. HSL’s operate analogously to POSIX mutexes,
in that they are always manipulated using a pointer.
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2.4.4.2 gasnet_hsl_init, gasnet_hsl_destroy
gasnet_hsl_t hsl = GASNET_HSL_INITIALIZER;

void gasnet_hsl_init (gasnet_hsl_t *hsl)

void gasnet_hsl_destroy (gasnet_hsl_t *hsl)
Similarly to POSIX mutexes, HSL’s can be created in two ways. They can be statically declared and
initialized using the GASNET_HSL_INITIALIZER constant. Alternately, HSL’s allocated using other means
(such as dynamic allocation) may be initialized by calling gasnet_hsl_init(). gasnet_hsl_destroy()
may be called on either type of HSL once it’s no longer needed to release any system resources associated
with it. It is erroneous to call gasnet_hsl_init() on a given HSL more than once. It is erroneous to
destroy an HSL which is currently locked. Any errors detected in HSL initialization/destruction are fatal.

2.4.4.3 gasnet_hsl_lock, gasnet_hsl_unlock

void gasnet_hsl_lock (gasnet_hsl-t *hsl)

int gasnet_hsl_trylock (gasnet_hsl-t *hsl)

void gasnet_hsl_unlock (gasnet_hsl_-t *hsl)
Lock and unlock HSL’s.

gasnet_hsl_lock(hsl) will block until the hsl lock can be acquired by the current thread. gasnet_hsl_
lock() may be called from within main-line client code or from within handlers - this is the only blocking
call which is permitted to execute within a GASNet handler context (e.g. it is erroneous to call POSIX
mutex locking functions).

gasnet_hsl_trylock(hsl) attempts to acquire hsl for the current thread, returning immediately
(without blocking). If the lock was successfully acquired, this function returns GASNET_OK. If the
lock could not be acquired (e.g it was found to be held by another thread) then this function returns
GASNET_ERR_NOT_READY and the lock is not acquired. It is not legal for an AM handler to spin-poll
a lock without bound using gasnet_hsl_trylock() waiting for success - AM handlers must always use
gasnet_hsl_lock() when they wish to block to acquire an HSL.

gasnet_hsl_unlock(hsl) releases the hsl lock previously acquired using gasnet_hsl_lock(hsl) or a suc-
cessful gasnet_hsl_trylock(hsl), and not yet released. It is erroneous to call any of these functions on
HSL’s which have not been properly initialized.

Note that under the GASNET_SEQ configuration, HSL locking functions may only be called from handlers
and the designated GASNet client thread (not from other client threads that may happen to exist - those
threads are not permitted to make any GASNet calls, which includes HSL locking calls).

All HSL locking/unlocking calls must follow the usage rules documented in the next section.

2.4.5 Restrictions on Handler-Safe Locks

There is a strict set of conventions governing the use of HSL’s which must be followed in order to ensure correct
operation on all GASNet implementations. Amongst other things, the restrictions are designed to ensure that
HSL’s are always held for a strictly bounded amount of time, to ensure that acquiring them from within a handler
can’t lead to deadlock. Clients which violate any of these rules may be subject to intermittent crashes, fatal errors
or network deadlocks.

e Code executing on a thread holding an HSL is implicitly within a No-Interrupt Section, and must follow all the
restrictions on code within a No-Interrupt Section (see Section 2.4.3 [Restrictions on No-Interrupt Sections],
page 16). Calls to gasnet_hold_interrupts() and gasnet_resume_interrupts() are ignored while holding
an HSL.

e Any handler which locks one or more HSL’s must unlock them all before returning or calling gasnet_
AMReply* ()

e HSL’s may not be locked recursively (i.e. calling gasnet_hsl_lock() or gasnet_hsl_trylock(hsl) on a lock
already held by the current thread) and attempting to do so will lead to undefined behavior. It is permitted
for a thread to acquire more than one HSL, although the traditional cautions about the possibility of deadlock
in the presence of multiple locks apply (e.g. the common solution is to define a partial order on locks and
always acquire them in a monotonically ascending sequence).
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e HSL’s must be unlocked in the reverse order they were locked (e.g. lock A; lock B; ... unlock B; unlock A; is
legal - reversing the order of unlocks is erroneous)

e HSL’s may not be shared across GASNet processes executing on a machine - for example, it is specifically
disallowed to place an HSL in a system V or mmapped shared memory segment and attempt to access it from
two different GASNet processes.

-

N
Implementor’s Note:

e HSL’s are likely to just be a thin wrapper around a POSIX mutex - need to add just enough state/code
to ensure the safety properties (must be a real lock, even under GASNET_PARSYNC because client may still
have multiple threads). The only specific action required is that a No-Interrupt Section is enforced while the

main-line code is holding an HSL (must be careful this works properly when multiple HSL’s are held or when
running in a handler).

e Robust implementations may add extra error checking to help discover violations of the restrictions, at least
when compiled in a debugging mode - for example, it should be easy to detect: attempts at recursive locking
on HSL’s, incorrectly ordered unlocks, handlers that fail to release HSL’s, explicit calls to gasnet_hold_
interrupts() and gasnet_resume_interrupts() in a handler or while an HSL is held or in a No-Interrupt
Section, and illegal calls to GASNet messaging functions while holding an HSL or inside a No-Interrupt
Section.
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3 Extended API

Errors in calls to the extended API are considered fatal and abort the job (by sending a SIGABRT signal) after
printing an appropriate error message.

3.1 Memory-to-memory Data Transfer Functions

These comments apply to all put/get functions:

e The nbytes parameter should be a compile-time constant whenever possible (for efficiency)

e The source memory address for all gets and the target memory address for all puts must fall within the memory
area registered for remote access by the remote node (see gasnet_attach()), or the results are undefined

e Pointers to remote memory are passed as an ordered pair of arguments: an integer node rank (a gasnet_
node_t) and a void * virtual memory address, which logically represent a global pointer to the given address
on the given node. These global pointers need not be remote - the node rank passed to these functions may
in fact be the rank of the current node - implementations must support this form of loopback, and should
probably attempt to optimize it by avoiding network traffic for such purely local operations.

e If the source memory and destination memory regions overlap the resulting value is undefined

3.2 Blocking memory-to-memory Transfers

3.2.1 gasnet_get, gasnet_put

void gasnet_get (void *dest, gasnet_node_t node, void *src, size_t nbytes)

void gasnet_put (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Blocking get/put operations for aligned data. The get operation fetches nbytes bytes from the address src
on node node and places them at dest in the local memory space. The put operation sends nbytes bytes
from the address src in the local address space, and places them at the address dest in the memory space of
node node. A call to these functions blocks until the transfer is complete, and the contents of the destination
memory are undefined until it completes. If the contents of the source memory change while the operation is
in progress the result will be implementation-specific. The src and dest addresses (whether local or remote)
must be properly aligned for accessing objects of size nbytes. nbytes must be >= 0 and has no maximum
size, but implementations will likely optimize for small powers of 2.

3.2.2 gasnet_get_bulk, gasnet_put_bulk

void gasnet_get_bulk (void *dest, gasnet_node_t node, void *src, size_t nbytes)

void gasnet_put_bulk (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Blocking get/put operations for bulk (unaligned) data. These function similarly to the aligned get/put
operations above, except the data is permitted to be unaligned, and implementations are likely to optimize
for larger sizes of nbytes.

3.2.3 gasnet_memset

void gasnet_memset (gasnet_node_t node, void *dest, int val, size-t nbytes)
Blocking operation that has the same effect as if the dest node had executed the POSIX call memset (dest ,
val, nbytes). As with puts, the destination memory must fall entirely within the memory area registered
for remote access by the dest node (see gasnet_attach).
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3.3 Non-blocking memory-to-memory transfers
The following functions provide non-blocking, split-phase memory access to shared data.

All such non-blocking operations require an initiation (generally a put or get) and a subsequent synchronization
on the completion of that operation before the result is guaranteed.

There are two basic categories of non-blocking operations, defined by the synchronization mechanism used:

"explicit handle" (nb) operations
These operations return a specific handle from the initiation that is used for synchronization. The
handle can be used to synchronize a specific subset of the nb operations in-flight

“implicit handle" (nbi) operations
These operations don’t return a handle from the initiation - synchronization is accomplished by calling
a synchronization routine that synchronizes all outstanding nbi operations.

3.3.1 Synchronization semantics of non-blocking data transfers

Successful synchronization of a non-blocking get operation means the local result is ready to be examined, and will
contain a value held by the source location at some time in the interval between the call to the initiation function
and the successful completion of the synchronization (note this specifically allows implementations to delay the
underlying read until the synchronization operation is called, provided they preserve the blocking semantics of the
synchronization function).

Successful synchronization of a put operation means the source data has been written to the destination location
and get operations issued subsequently by any thread (or load instructions issued by the destination node) will
receive the new value or a subsequently written value (assuming no other threads are writing the location)

Note that the order in which non-blocking operations complete is intentionally unspecified - the system is free
to coalesce and/or reorder non-blocking operations with respect to other blocking or non-blocking operations,
or operations initiated from a separate thread - the only ordering constraints that must be satisfied are those
explicitly enforced using the synchronization functions (i.e. the non-blocking operation is only guaranteed to
occur somewhere in the interval between initiation and successful synchronization on that operation).

Implementors should attempt to make the non-blocking initiation operations return as quickly as possible -
however in some cases (e.g. when a large number of non-blocking operations have been issued or the network is
otherwise busy) it may be necessary to block temporarily while waiting for the network to become available. In
any case, all implementations must support at least 2! — 1 non-blocking operations in-progress - that is, the client
is free to issue up to 2'% — 1 non-blocking operations before issuing a sync operation, and the implementation must
handle this correctly without deadlock or livelock.

3.3.2 Non-blocking memory-to-memory transfers (explicit handle)

The explicit-handle non-blocking data transfer functions return a gasnet_handle_t value to represent the non-
blocking operation in flight. gasnet_handle_t is an opaque scalar type whose contents are implementation-
defined, with one exception - every implementation must provide a scalar value corresponding to an "invalid"
handle (GASNET_INVALID_HANDLE) and furthermore this value must be the result of setting all the bytes in the
gasnet_handle_t datatype to zero. Implementators are free to define the gasnet_handle_t type to be any
reasonable and appropriate size, although they are recommended to use a type which fits within a single standard
register on the target architecture. In any case, the datatype should be wide enough to express at least 216 — 1
different handle values, to prevent limiting the number of non-blocking operations in progress due to the number
of handles available. gasnet_handle_t has value semantics, so for example it is permitted for clients to pass them
across function call boundaries.

In the case of multithreaded clients (GASNET_PAR or GASNET_PARSYNC), gasnet_handle_t values are thread-
specific. In other words, it is an error to obtain a handle value by initiating a non-blocking operation on one
thread, and later pass that handle into a synchronization function from a different thread.

Any explicit-handle, non-blocking operation may return GASNET_INVALID_HANDLE to indicate it was possible
to complete the operation immediately without blocking (e.g. operations where the "remote" node is actually the
local node)
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It is always an error to discard the gasnet_handle_t value for an explicit-handle operation in-flight - i.e. to
initiate an operation and never synchronize on its completion.

3.3.2.1 gasnet_get_nb, gasnet_put_nb

gasnet_handle_t gasnet_get_nb (void *dest, gasnet_node_t node, void *src, size_t nbytes)

gasnet_handle_t gasnet_put_nb (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Non-blocking get/put functions for aligned data. These functions operate similarly to their blocking coun-
terparts, except they initiate a non-blocking operation and return immediately with a handle (gasnet_
handle_t) which must later be used (by calling an explicit gasnet_*_syncnb* () function), to synchronize
on completion of the non-blocking operation. The contents of the destination memory address are undefined
until a synchronization completes successfully for the non-blocking operation. For the put version, the source
memory may be safely overwritten once the initiation function returns.

3.3.2.2 gasnet_get_nb_bulk, gasnet_put_nb_bulk

gasnet_handle_t gasnet_get_nb_bulk (void *dest, gasnet_node_t node, void *src, size_t nbytes)

gasnet_handle_t gasnet_put_nb_bulk (gasnet_node_t node, void *dest, void *src, size_t nbytes)
Non-blocking get/put functions for bulk (unaligned) data. For the put version, the source memory may
not be safely overwritten until a successful synchronization for the operation. If the contents of the source
memory change while the operation is in progress the result will be implementation-specific. These otherwise
behave identically to the non-bulk variants (but are likely to be optimized for large transfers).

3.3.2.3 gasnet_memset_nb

gasnet_handle_t gasnet_memset_nb (gasnet_node_t node, void *dest, int val, size_-t nbytes)
Non-blocking operation that has the same effect as if the dest node had executed the POSIX call
memset (dest, val, nbytes). As with puts, the destination memory must fall entirely within the memory
area registered for remote access by the dest node (see gasnet_attach).

The synchronization behavior is identical to a non-blocking, explicit-handle put operation (the gasnet_
handle_t return value must be synchronized using an explicit-handle synchronization operation).

3.3.3 Synchronization for explicit-handle non-blocking operations

GASNet supports two basic types of synchronization for non-blocking operations - trying (polling) and waiting
(blocking). All explicit-handle synchronization functions take one or more gasnet_handle_t values as input and
either return an indication of whether the operation has completed or block until it completes.

3.3.3.1 gasnet_wait_syncnb, gasnet_try_syncnb

void gasnet_wait_syncnb (gasnet_handle_t handle)

int gasnet_try_syncnb (gasnet_handle_t handle)
Synchronize on the completion of a single specified explicit-handle non-blocking operation that was initiated
by the calling thread. gasnet_wait_syncnb() blocks until the specified operation has completed (or returns
immediately if it has already completed). In any case, the handle value is "dead" after gasnet_wait_
syncnb () returns and may not be used in future synchronization operations. gasnet_try_syncnb() always
returns immediately, with the value GASNET_OK if the operation is complete (at which point the handle value
is "dead", and may not be used in future synchronization operations), or GASNET_ERR_NOT_READY if the
operation is not yet complete and future synchronization is necessary to complete this operation.

It is legal to pass GASNET_INVALID_HANDLE as input to these functions - gasnet_wait_sync(GASNET_
INVALID_HANDLE) returns immediately and gasnet_try_sync (GASNET_INVALID_HANDLE) returns GASNET_
OK.

It is an error to pass a gasnet_handle_t value for an operation which has already been successfully syn-
chronized using one of the explicit-handle synchronization functions.
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3.3.3.2 gasnet_wait_syncnb_all, gasnet_try_syncnb_all

void gasnet_wait_syncnb_all (gasnet_handle_t *handles, size_t numhandles)

int gasnet_try_syncnb_all (gasnet_handle-t *handles, size_-t numhandles)
Synchronize on the completion of an array of non-blocking explicit-handle operations (all of which were
initiated by this thread). numbhandles specifies the number of handles in the provided array of handles.
gasnet_wait_syncnb_all() blocks until all the specified operations have completed (or returns immediately
if they have all already completed). gasnet_try_syncnb_all always returns immediately, with the value
GASNET_OK if all the specified operations have completed, or GASNET_ERR_NOT_READY if one or more of the
operations is not yet complete and future synchronization is necessary to complete some of the operations.

Both functions will modify the provided array to reflect completions - handles whose operations have com-
pleted are overwritten with the value GASNET_INVALID_HANDLE, and the client may test against this value
when gasnet_try_syncnb_all() returns GASNET_ERR_NOT_READY to determine which operations are com-
plete and which are still pending.

It is legal to pass the value GASNET_INVALID_HANDLE in some of the array entries, and both functions will
ignore it so that it has no effect on behavior. For example, if all entries in the array are GASNET _INVALID_
HANDLE (or numhandles==0), then gasnet_try_syncnb_all() will return GASNET_OK.

3.3.3.3 gasnet_wait_syncnb_some, gasnet_try_syncnb_some

void gasnet_wait_syncnb_some (gasnet_handle_t *handles, size_t numhandles)

int gasnet_try_syncnb_some (gasnet_handle_t *handles, size_t numhandles)
These operate analogously to the gasnet_*_syncnb_all variants, except they only wait/test for at least one
operation corresponding to a valid handle in the provided list to be complete (the valid handles values are all
those which are not GASNET_INVALID_HANDLE). Specifically, gasnet_wait_syncnb_some() will block until
at least one of the valid handles in the list has completed, and indicate the operations that have completed by
setting the corresponding handles to the value GASNET_INVALID_HANDLE. Similarly, gasnet_try_syncnb_
some will check if at least one valid handle in the list has completed (setting those completed handles to
GASNET_INVALID_HANDLE) and return GASNET_OK if it detected at least one completion or GASNET_ERR_NOT_
READY otherwise.

Both functions ignore GASNET_INVALID_HANDLE values so those values have no effect on behavior. If the
input array is empty or consists only of GASNET_INVALID_HANDLE values, gasnet_wait_syncnb_some will
return immediately and gasnet_try_syncnb_some will return GASNET_OK.

3.3.4 Non-blocking memory-to-memory transfers (implicit handle)

3.3.4.1 gasnet_get_nbi, gasnet_put_nbi, gasnet_get_nbi_bulk, gasnet_put_nbi_bulk,
gasnet_memset_nbi

void gasnet_get_nbi (void *dest, gasnet_node_t node, void *src, size_t nbytes)

void gasnet_put_nbi (gasnet_node_t node, void *dest, void *src, size_t nbytes)

void gasnet_get_nbi_bulk (void *dest, gasnet-node_t node, void *src, size_t nbytes)

void gasnet_put_nbi_bulk (gasnet_node_t node, void *dest, void *src, size_t nbytes)

void gasnet_memset_nbi (gasnet_node_t node, void *dest, int val, size_t nbytes)
Non-blocking get/put functions for aligned and unaligned (bulk) data. These functions operate similarly to
their explicit-handle counterparts, except they do not return a handle and must be synchronized using the
implicit-handle synchronization operations. The contents of the destination memory address are undefined
until a synchronization completes successfully for the non-blocking operation. As with the explicit-handle
variants, the source memory for the non-bulk put operation may be safely overwritten once the initiation
function returns, but the bulk put version requires the source memory to remain unchanged until the
operation has been successfully completed using a synchronization.

gasnet_memset_nbi behaves identically to gasnet_memset_nb, except that it is synchronized as if it were
a non-blocking, implicit-handle put operation.
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3.3.5 Synchronization for implicit-handle non-blocking operations
The following functions are used to synchronize implicit-handle non-blocking operations.

In the case of multithreaded clients, implicit-handle synchronization functions only synchronize the implicit-
handle non-blocking operations initiated from the calling thread. Operations initiated by other threads sharing
the GASNet interface proceed independently and are not synchronized. Implicit-handle synchronization functions
will synchronize operations initiated within other function frames by the calling thread (but this cannot affect the
correctness of correctly synchronized code).

3.3.5.1 gasnet_wait_syncnbi_gets, gasnet_wait_syncnbi_puts,
gasnet_wait_syncnbi_all, gasnet_try_syncnbi_gets, gasnet_try_syncnbi_puts,
gasnet_try_syncnbi_all

void gasnet_wait_syncnbi_gets ()

void gasnet_wait_syncnbi_puts ()

void gasnet_wait_syncnbi_all ()

int gasnet_try_syncnbi_gets ()

int gasnet_try_syncnbi_puts ()

int gasnet_try_syncnbi_all ()
These functions implicitly specify a set of non-blocking operations on which to synchronize. They synchronize
on a set of outstanding non-blocking implicit-handle operations initiated by this thread - either all such gets,
all such puts, or all such puts and gets (where outstanding is defined as all those implicit-handle operations
which have been initiated (outside an access region) but not yet completed through a successful implicit
synchronization). The wait variants block until all operations in this implicit set have completed (indicating
these operations have been successfully synchronized). The try variants test whether all operations in
the implicit set have completed, and return GASNET_OK if so (which indicates these operations have been
successfully synchronized) or GASNET_ERR_NOT_READY otherwise (in which case none of these operations may
be considered successfully synchronized).

If there are no outstanding implicit-handle operations, these synchronization functions all return immediately
(with GASNET_OK for the try variants).

Implementor’s Note:

e Some implementations may choose to synchronize operations from other independent threads as well, but they
must ensure progress for the calling thread in the presence of another thread which is continuously initiating
implicit-handle non-blocking operations.

3.3.6 Implicit access region synchronization

In some cases, it may be useful or desirable to initiate a number of non-blocking shared-memory operations
(possibly without knowing how many at compile-time) and synchronize them at a later time using a single, fast
synchronization. Simple implicit handle synchronization may not be appropriate for this situation if there are
intervening implicit accesses which are not to be synchronized. This situation could be handled using explicit-
handle non-blocking operations and a list synchronization (e.g. gasnet_wait_syncnb_all()), but this may not be
desirable because it requires managing an array of handles (which could have negative cache effects on performance,
or could be expensive to allocate when the size is not known until runtime). To handle these cases, we provide
"implicit access region" synchronization, described below.

3.3.6.1 gasnet_begin_nbi_accessregion, gasnet_end_nbi_accessregion

void gasnet_begin_nbi_accessregion ();

gasnet_handle_t gasnet_end_nbi_accessregion ();
gasnet_begin_nbi_accessregion() and gasnet_end_nbi_accessregion() are used to define an implicit
access region (any code which dynamically executes between the begin and end calls is said to be "inside"
the region) The begin and end calls must be paired, and may not be nested recursively or the results are
undefined. It is erroneous to call any implicit-handle synchronization function within the access region. All
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implicit-handle non-blocking operations initiated inside the region become "associated" with the abstract
access region handle being constructed. gasnet_end_nbi_accessregion() returns an explicit handle which
jointly represents all the associated implicit-handle operations (those initiated within the access region). This
handle can then be passed to the regular explicit-handle synchronization functions, and will be successfully
synchronized when all of the associated non-blocking operations (both puts and gets) initiated in the access
region have completed. The associated operations cease to be implicit-handle operations, and are not
synchronized by subsequent calls to the implicit-handle synchronization functions occurring after the access
region (e.g. gasnet_wait_syncnbi_all()). Explicit-handle operations initiated within the access region
operate as usual and do not become associated with the access region.

Sample code:

gasnet_begin_nbi_accessregion(); // begin the access region

gasnet_put_nbi(...); // becomes assoc. with access region
while (...) {
gasnet_put_nbi(...); // becomes assoc. with access region

}

// unrelated explicit-handle operation not assoc. with access region
h2 = gasnet_get_nb(...);
gasnet_wait_syncnb(h2);

// end the access region and get the handle
handle = gasnet_end_nbi_accessregion();

. // other code, which may include unrelated implicit-handle
// operations+syncs, or other regions, etc

// wait for all the operations assoc. with access region to complete
gasnet_wait_syncnb(handle);

3.4 Register-memory operations

Register-memory operations allow client code to avoid forcing communicated data to pass through the local memory
system. Some interconnects may be able to take advantage of this capability and launch remote puts directly from

registers or recieve remote gets directly into registers.
3.4.1 Value Put
3.4.1.1 gasnet_put_val, gasnet_put_nb_val, gasnet_put_nbi_val

void gasnet_put_val (gasnet_node_t node, void *dest, gasnet_register_value_t value, size_t nbytes);

gasnet_handle_t gasnet_put_nb_val (gasnet_node_t node, void *dest,
gasnet_register_value_t value, size_t nbytes);

void gasnet_put_nbi_val (gasnet_node_t node, void *dest,
gasnet_register_value_t value, size_t nbytes);

Register-to-remote-memory put - these functions take the value to be put as input parameter to avoid
forcing outgoing values to local memory in client code. Otherwise, the behavior is identical to the memory-
to-memory versions of put above. Requires: nbytes > 0 && nbytes <= SIZEOF_GASNET_REGISTER_VALUE_T.
The value written to the target address is a direct byte copy of the 8*nbytes low-order bits of value, written
with the endianness appropriate for an nbytes integral value on the current architecture. The non-blocking
forms of value put must be synchronized using the explicit or implicit synchronization functions defined
above, as appropriate
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3.4.2 Blocking Value Get

3.4.2.1 gasnet_get_val

gasnet_register_value_t gasnet_get_val (gasnet_node_t node, void *src, size_t nbytes);
This function returns the fetched value to avoid forcing incoming values through local memory (on archi-
tectures which pass the return value in a register). Otherwise, the behavior is identical to the memory-to-
memory blocking get. Requires: nbytes > 0 && nbytes <= SIZEOF_GASNET_REGISTER_VALUE_T. The value
returned is the one obtained by reading the nbytes bytes starting at the source address with the endianness
appropriate for an nbytes integral value on the current architecture and setting the high-order bits (if any)
to zero (i.e. no sign-extension)

3.4.3 Non-Blocking Value Get (explicit-handle)

This operates similarly to the blocking form of value get, but is split-phase. Non-blocking value gets are synchro-
nized independently of all other operations in GASNet.

typedef 777 gasnet_valget_handle_t;
3.4.3.1 gasnet_get_nb_val, gasnet_wait_syncnb_valget

gasnet_valget_handle_t gasnet_get_nb_val (gasnet_-node_t node, void *src, size_t nbytes);

gasnet_register_value_t gasnet_wait_syncnb_valget (gasnet_valget_handle_t handle);
gasnet_get_nb_val initiates a non-blocking value get and returns an explicit handle which must be
synchronized using gasnet_wait_syncnb_valget. gasnet_wait_syncnb_valget synchronizes one such
outstanding operation and returns the retrieved value as described for the blocking version. Note that
gasnet_valget_handle_t and gasnet_handle_t are completely different datatypes and may not be
intermixed (i.e. gasnet_valget_handle_t cannot be used with other synchronization functions, and
gasnet_handle_t cannot be passed to gasnet_wait_syncnb_valget). The gasnet_valget_handle_t
type is completely opaque (with no special "invalid" value), although implementors are recommended to
make sizeof (gasnet_valget_handle_t) <= sizeof (gasnet_register_value_t) to facilitate register
reuse. There is no try variant of value get synchronization, and no implicit-handle variant.

3.5 Barriers

The following functions can be used to execute a parallel split-phase barrier with the given barrier identifier
across all nodes in the job. Note that the barrier wait/notify functions should only be called once (i.e. by one
representative thread) on each node per barrier phase. The client must synchronize its own accesses to the barrier
functions and ensure that only one thread is ever inside a GASNet barrier function at a time (esp. gasnet_
barrier_try()).

#define GASNET_BARRIERFLAG_ANONYMQOUS 777
#define GASNET_BARRIERFLAG_MISMATCH 777

3.5.1 gasnet_barrier_notify

void gasnet_barrier_notify (int id, int flags)
Execute the notification for a split-phase barrier, with a barrier value id. This is a non-blocking operation
that completes immediately after noting the barrier value. No synchronization is performed on outstanding
non-blocking memory operations.

Generates a fatal error if this is the second call to gasnet_barrier_notify() on this node since the last
call to gasnet_barrier_wait() or the beginning of the program.

If flags == 0 then this is a "named" barrier notify that carries the given id value. If flags == GASNET_
BARRIERFLAG_ANONYMOUS, then id is ignored and the barrier is anonymous - it has no specific value. If flags
== GASNET_BARRIERFLAG_MISMATCH, then the subsequent gasnet_barrier_wait () call on every node will
return GASNET_ERR_BARRIER_MISMATCH (i.e. allows the client to force a global mismatch error when a
mismatch was detected locally).



Chapter 3: Extended API GASNet Specification, Version 1.8.1 26
3.5.2 gasnet_barrier_wait

int gasnet_barrier_wait (int id, int flags)
Execute the wait for a split-phase barrier, with a barrier value. This is a blocking operation that returns
only after all remote nodes have called gasnet_barrier_notify(). No synchronization is performed on
outstanding non-blocking memory operations .

Generates a fatal error if there were no preceding calls to gasnet_barrier_notify() on this node, or if
this is the second call to gasnet_barrier_wait() (or successful call to gasnet_barrier_try()) since the
last call to gasnet_barrier_notify() on this node. On a GASNET_PAR or GASNET_PARSYNC configuration,
the thread calling gasnet_barrier_notify() is permitted to differ from the thread which calls the paired
gasnet_barrier_wait (), but the ordering between the calls must still be maintained.

Returns GASNET_ERR_BARRIER_MISMATCH if flags is not equal to the flags value passed to the preced-
ing gasnet_barrier_notify() call made by this node. Returns GASNET_ERR_BARRIER_MISMATCH if the
flags value passed to gasnet_barrier_notify() on this or any other node was GASNET_BARRIERFLAG_
MISMATCH. Returns GASNET_ERR_BARRIER_MISMATCH if flags==0 and the supplied id value doesn’t match
the id value provided in the preceding gasnet_barrier_notify() call made by this node. Returns GASNET_
ERR_BARRIER_MISMATCH if any two nodes passed non-anonymous barrier values which didn’t match during
the gasnet_barrier_notify() calls which began this barrier phase. Otherwise, returns GASNET_OK to in-
dicate that all nodes have called a matching gasnet_barrier_notify() and the barrier phase is complete.

3.5.3 gasnet_barrier_try

int gasnet_barrier_try (int id, int flags)
gasnet_barrier_try() functions similarly to gasnet_wait(), except that it always returns immediately.
If the barrier has been notified by all nodes, the call behaves as a call to gasnet_barrier_wait() with
the same barrier id and flags, and returns GASNET_OK (or GASNET_ERR_BARRIER_MISMATCH in the case a
mismatch is detected). If the barrier has not yet been notified by some node, the call is a no-op and returns
the value GASNET_ERR_NOT_READY.

Generates a fatal error if there were no preceding calls to gasnet_barrier_notify () on this node, or if this
is the second call to gasnet_barrier_wait() (or successful call to gasnet_barrier_try()) since the last
call to gasnet_barrier_notify() on this node.

3.6 Threading support

3.6.1 Thread-identification optimization

When compiled in the GASNET_PAR or GASNET_PARSYNC configurations, GASNet is capable of handling multiple
client threads. It is likely that GASNet implementations will need to distinguish these threads, specifically they
may need to store some metadata associated with each client thread. Unfortunately, the overhead of discovering the
identity of a particular client thread making a GASNet call (hereafter termed "thread discovery") can have a non-
trivial overhead on some threading systems (e.g. the cost of calling pthread_self () or pthread_getspecific()).
Many of the simpler GASNet functions could have their performance dominated by this cost if they need to perform
thread discovery on every call.

The following macros provide a way for the client to amortize the cost of thread discovery over many GASNet
calls made by the same thread. This is an optimization which is totally optional - clients need not make any of
the calls below to have a working system, although GASNet performance may suffer without it in a GASNET_PAR
or GASNET_PARSYNC configuration on some platforms.

typedef void *gasnet_threadinfo_t;

gasnet_threadinfo_t is an opaque pointer representing the internal GASNet metadata associated with a
particular client thread.
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3.6.1.1 GASNET_GET_THREADINFO
#define GASNET_GET_THREADINFO() 777

Returns a value of type gasnet_threadinfo_t which represents the GASNet internal metadata associated with
the current client thread. This gasnet_threadinfo_t value can be passed into or out of functions and may be
posted for GASNet’s use with GASNET_POST_THREADINFO(). May be called from anywhere in the client program,
at any time after GASNet initialization. It is erroneous to hand-off this gasnet_threadinfo_t value to a different
client thread.

3.6.1.2 GASNET_POST_THREADINFO
#define GASNET_POST_THREADINFO(info) 777

This macro may optionally be placed (followed by a semi-colon) at the top of functions which make calls to
GASNet. It has no runtime semantics, but it may provide a performance boost on some implementations (especially
in functions which make multiple calls to the extended API - e.g. it provides the implementation with a place for
minimal per-function initialization or temporary storage that may be helpful in amortizing implementation-specific
overheads). When used, it must appear only at the very beginning of a function or block (before any declarations
or calls to the API in that function). It may not appear as a global declaration. The info argument must be a
gasnet_threadinfo_t value acquired from a previous call to GASNET_GET_THREADINFO() on this thread.

3.6.1.3 GASNET_BEGIN_FUNCTION

#define GASNET_BEGIN_FUNCTION() 7?77

A convenience macro that may optionally be placed (followed by a semi-colon) at the top of functions which
repeatedly make GASNet calls, to amortize the overhead of thread discovery on some implementations.

It has behavior equivalent to GASNET_POST_THREADINFO(GASNET_GET_THREADINFO()), however some imple-
mentations may choose to lazily postpone performing thread discovery until the first place where it is actually
needed.

3.6.2 Thread management
3.6.2.1 gasnet_set_waitmode

int gasnet_set_waitmode (int wait_mode)
Optional call which gives the GASNet implementation a hint about how aggressively threads within blocking
GASNet calls should contend for CPU resources. wait_mode must be one of the following recognized values:

GASNET_WAIT_SPIN
contend aggressively for CPU resources while waiting (spin)

GASNET_WAIT_BLOCK
yield CPU resources immediately while waiting (block)

GASNET_WAIT_SPINBLOCK
spin for an implementation-dependent period, then block

Wait mode is a per-node hint which is permitted to differ across GASNet nodes.
Returns GASNET_OK on success.
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Appendix A Notes

A.1 Open Issues in the GASNet Specification

e Add support for strided & scatter/gather accesses (spec underway - will be included in GASNet spec v2.0)
e Add collective ops - reductions, scans, etc. (spec underway - will be included in GASNet spec v2.0)
e [s it worthwhile to add a blocking barrier call? May want to tune this differently from split-phase barrier on

some networks, but would need to define the semantics of how blocking and non-blocking barriers can be used
together.

A.2 Core API Active Messaging Functions - differences from Active
Messages 2.0

The GASNet core API was originally based on Active Messages 2.0 (as described in A. Mainwaring and D. Culler
in "Active Message Applications Programming Interface and Communication Subsystem Organization"), however
we’ve removed some of the generality which is not required (and can lead to performance degradation and more
implementation effort), and stripped it down to the bare essentials required for active messages in a purely SPMD
environment. The final spec more closely resembles the " Generic Active Message Interface Specification v.1.1", by
D.Culler et al., however we describe the differences from AM2.0 for readers familiar with that specification (and
because we envision a number of the GASNet core implementations being simply a thin wrapper over the existing
AM2.0 implementations on a number of platforms).

Here are a summary of the changes (informal style.. this is not really part of the spec):

e the functions are renamed to match the GASNet conventions
e there are no bundles and only one (implicit) endpoint. This necessitates the following changes:
e All AM2 functions which took an endpoint or bundle argument have that argument removed

e The following functions no longer exist: AM_Init, AM_Terminate, AM_AllocateBundle,
AM_AllocateEndpoint, AM_FreeEndpoint, AM_FreeBundle, AM_MoveEndpoint, AM_GetXferM,
AM_GetDestEndpoint

e all handler registration is performed during gasnet_attach(), and the maximum number of handlers is fixed
at 256 (including handler 0, the error handler)
e The following functions no longer exist: AM_SetHandler and AM_SetHandlerAny, AM_GetNumHandlers,
AM_SetNumberHandlers, AM_MaxNumHandlers
e Segment registration is handled by gasnet_attach() (using a uintptr_t to allow entire VA space)
e The following functions no longer exist: AM_SetSeg and AM_MaxSegLength (still have AM_GetSeg)

e implementations must support an endpoint segment length that spans the entire virtual address space,
though the performance may change for larger segment sizes (if gasnet_attach requests a size larger
than what underlying AM_SetSeg can provide, then we turn off large AM Xfers and emulate gasnet_Xfer
using medium messages)

e the dest_offset argument to the Xfer functions is changed to a void * address

e there are no tags or endpoint names visible to the user - such details are all handled internally by the job
startup mechanism, which sets up a SPMD-style mapping table (all the nodes, including the current node, in
ascending order by rank).

e Therefore, the following functions no longer exist: AM_Map, AM_MapAny, AM_Unmap, AM_SetTag,
AM_GetTag, AM_GetTranslationName, AM_GetTranslationTag, AM_GetTranslationInUse,
AM_MaxNumTranslations, AM_GetNumTranslations, AM_SetNumTranslations, AM_GetMsgTag

e the en_t * argument to AM_GetSourceEndpoint is now an gasnet_node_t * and returns the node rank
of the sender (the now-opaque token could be implemented as the integer node index itself, although we
allow implementations to still use it as a ptr to metadata if required)

e AM_RequestXferAsyncM has more useful semantics (may block)

e AM_SetExpectedResources no longer exists
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e all implementations must support the AM_PAR (multi-threaded) access mode (GASNET_PAR configuration)
e we handle 64-bit implementations - require small size to be 16 32-bit args (ensure 8 (voidx)’s can be sent)
cons: handler code needs to be rewritten for 64-bit platforms to perform packing/unpacking
e Blocking polling operation is simplified in the following ways:
e AM_GetEventMask and AM_SetEventMask no longer exist
e AM_WaitSema is replaced with GASNET_BLOCKUNTIL()
e Maybe deprecate ReplyXfer in favor of GetXfer
e some implementations have trouble with large ReplyXfer’s (with software flow control & reliability)
e better yet, just separate AM_MaxLong into AM_MaxLongRequest, and AM_MaxLongReply

o AM2.0 GetXfer doesn’t add any expressiveness - really want a way to get from remote segment into
arbitrary local memory address

e All Xfer functions specify the destination using a virtual memory address (which must fall within the registered
segment) rather than a segment offset.

e request handlers are permitted to omit a reply call if no reply handler is needed (and some implementations
may optimize this case)

A.3 Active Message Categories - Alternate formulation of AM (not part of
spec)

Newcomers to Active Messages and GASNet occasionally express confusion over the concepts of Short, Medium

and Long AM’s. Despite the somewhat misleading naming convention, the three categories of messages may

actually bear only a loose correllation to the actual message/data sizes. The important distinctions are semantic,

and sufficiently minor that one might imagine replacing the three categories with a single, more general type of
AM that provides the functionality of each GASNet AM category as a special case.

Specifically, a GASNet Short AM can be seen as a special case of a Medium or Long AM where the payload
has length zero. Furthermore, the only important semantic distinction between Medium and Long AM’s are that
Medium AM’s provide the payload to the handler in a temporary network buffer, whereas Long AM’s write the
payload (often using RDMA) to a sender-specified location in the user memory segment of the target node before
running the handler (each semantic is useful for different usage scenarios).

Hence, some users may find it helpful to consider building "unified" AM request/reply functions such as
suggested below:

/* unified request function */
int unified_AMRequestM(
gasnet_node_t dest, gasnet_handler_t handler,
void *buf, size_t buf_len,
void *dest_addr,
int32 arg0, int32 argl, ...) {
if (buf == NULL)
return gasnet_AMRequestShortM(dest,handler,argl,argl,...);
else if (dest_addr == NULL)
return gasnet_AMRequestMediumM(dest,handler,buf,buf_len,arg0,argl,...);
else
return gasnet_AMRequestLongM(dest,handler,buf,buf_len,dest_addr,arg0,argl,...);
}

e M is the number of arguments, which must be <= gasnet_AMMaxArgs ()

e dest_addr == NULL requires buf _len <= gasnet_AMMaxMedium(), and the payload is delivered in a temporary
buffer

e dest_addr !'= NULL requires buf_len <= gasnet_AMMaxLongRequest() (or gasnet_AMMaxLongReply() for
replies), and the payload is written into the target node segment at dest_addr
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e Handler prototypes remain the same as under GASNet:
buf == NULL:

void handler_nopayload(gasnet_token_t token,
gasnet_handlerarg_t argO, gasnet_handlerarg_ t argl...

buf != NULL:
void handler_withpayload(gasnet_token_t token,
void *buf, size_t buf_len,
gasnet_handlerarg_t arg0O, gasnet_handlerarg t argl...);

30
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