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Conventional Wisdom
• Send few, large messages

– Allows the network to deliver the most effective bandwidth
• Isolate computation and communication phases 

– Uses bulk-synchronous programming 
– Allows for packing to maximize message size

• Message passing is preferred paradigm for clusters
• Global Address Space (GAS) Languages are 

primarily useful for latency sensitive applications 
• GAS Languages mainly help productivity

– However, not well known for their performance advantages
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Our Contributions
• Increasingly, cost of HPC machines is in the network

• One-sided communication model is a better match 
to modern networks
– GAS Languages simplify programming for this model

• How to use these communication advantages 
– Case study with NAS Fourier Transform (FT)
– Algorithms designed to relieve communication bottlenecks 

• Overlap communication and computation
• Send messages early and often to maximize overlap
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UPC Programming Model
• Global address space: any thread/process may 

directly read/write data allocated by another
• Partitioned: data is designated as local (near) or 

global (possibly far); programmer controls layout 

g: g: g: 

Proc 0 Proc 1 Proc n-1

• 3 of the current languages: UPC, CAF, and Titanium 
– Emphasis in this talk on UPC (based on C)
– However programming paradigms presented in this work are 

not limited to UPC

l: l: l: 

Global arrays:
Allows any 
processor to directly 
access data on any 
other processor

shared

private
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Advantages of GAS Languages

• Productivity
– GAS supports construction of complex shared data structures
– High level constructs simplify parallel programming
– Related work has already focused on these advantages

• Performance (the main focus of this talk)
– GAS Languages can be faster than two-sided MPI
– One-sided communication paradigm for GAS languages more 

natural fit to modern cluster networks 
– Enables novel algorithms to leverage the power of these networks
– GASNet, the communication system in the Berkeley UPC Project, 

is designed to take advantage of this communication paradigm
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One-Sided vs Two-Sided

• A one-sided put/get can be entirely handled by network interface with RDMA 
support

– CPU can dedicate more time to computation rather than handling communication 

• A two-sided message can employ RDMA for only part of the communication
– Each message requires the target to provide the destination address
– Offloaded to network interface in networks like Quadrics

• RDMA makes it apparent that MPI has added costs associated with ordering to 
make it usable as a end-user programming model

dest. addr.

message id

data payload

data payload

one-sided put (e.g., GASNet)

two-sided message (e.g., MPI)

network
interface

memory

host
CPU
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Latency Advantages
• Comparison:

– One-sided:
• Initiator can always transmit 

remote address 
• Close semantic match to high 

bandwidth, zero-copy RDMA 
– Two-sided:

• Receiver must provide 
destination address

• Latency measurement correlates 
to software overhead
– Much of the small-message 

latency is due to time spent in 
software/firmware processing

do
w

n 
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d

One-sided implementation consistently 
outperforms 2-sided counterpart
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Bandwidth Advantages
• One-sided semantics better match to 

RDMA supported networks
– Relaxing point-to-point ordering 

constraint can allow for higher 
performance on some networks 

– GASNet saturates to hardware peak 
at lower message sizes

– Synchronization decoupled from data 
transfer

• MPI semantics designed for end user
– Comparison against good MPI 

implementation
– Semantic requirements hinder MPI 

performance
– Synchronization and data transferred 

coupled together in message passing

Over a factor of 2 improvement 
for 1kB messages

up is good
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Bandwidth Advantages (cont)

• GASNet and MPI saturate 
to roughly the same 
bandwidth for “large”
messages

• GASNet consistently 
outperforms MPI for “mid-
range” message sizes

up is good
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A Case Study: NAS FT
• How to use the potential that the microbenchmarks reveal?

• Perform a large 3 dimensional Fourier Transform
– Used in many areas of computational sciences 

• Molecular dynamics, computational fluid dynamics, image processing, 
signal processing, nanoscience, astrophysics, etc. 

• Representative of a class of communication intensive 
algorithms
– Sorting algorithms rely on a similar intensive communication pattern
– Requires every processor to communicate with every other processor
– Limited by bandwidth
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Performing a 3D FFT
• NX x NY x NZ elements spread across P processors
• Will Use 1-Dimensional Layout in Z dimension

– Each processor gets NZ / P “planes” of NX x NY elements 
per plane

1D Partition

NX

NY

Example: P = 4

NZ

p0
p1

p2
p3

NZ/P
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Performing a 3D FFT (part 2)
• Perform an FFT in all three dimensions
• With 1D layout, 2 out of the 3 dimensions are 

local while the last Z dimension is distributed

Step 1: FFTs on the columns
(all elements local)

Step 2: FFTs on the rows
(all elements local)

Step 3: FFTs in the Z-dimension
(requires communication)
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Performing the 3D FFT (part 3)
• Can perform Steps 1 and 2 since all the data is 

available without communication
• Perform a Global Transpose of the cube

– Allows step 3 to continue

Transpose
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The Transpose
• Each processor has to scatter input domain to other 

processors
– Every processor divides its portion of the domain into P pieces 
– Send each of the P pieces to a different processor

• Three different ways to break it up the messages
1. Packed Slabs (i.e. single packed “Alltoall” in MPI parlance)
2. Slabs
3. Pencils

• An order of magnitude increase in the number of messages
• An order of magnitude decrease in the size of each message
• “Slabs” and “Pencils” allow overlapping communication and 

computation and leverage RDMA support in modern networks 
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Algorithm 1: Packed Slabs
Example with P=4, NX=NY=NZ=16

1. Perform all row and column FFTs
2. Perform local transpose 

– data destined to a remote processor 
are grouped together

3. Perform P puts of the data

Local transpose

put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64 processors
– Send 64 messages of 512kB each
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Bandwidth Utilization
• NAS FT (Class D) with 256 processors on 

Opteron/InfiniBand
– Each processor sends 256 messages of 512kBytes
– Global Transpose (i.e. all to all exchange) only achieves 

67% of peak point-to-point bidirectional bandwidth 
– Many factors could cause this slowdown

• Network contention 
• Number of processors that each processor communicates with

• Can we do better?
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Algorithm 2: Slabs
• Waiting to send all data in one phase 

bunches up communication events
• Algorithm Sketch

– for each of the NZ/P planes
• Perform all column FFTs
• for each of the P “slabs”

(a slab is NX/P rows)
– Perform FFTs on the rows in the slab
– Initiate 1-sided put of the slab 

– Wait for all puts to finish 
– Barrier

• Non-blocking RDMA puts allow data 
movement to be overlapped with 
computation. 

• Puts are spaced apart by the amount 
of time to perform FFTs on NX/P rows

Start computation 
for next plane

plane 0
put to proc 0

put to proc 1

put to proc 2

put to proc 3

• For 5123 grid across 64 
processors
– Send 512 messages of 

64kB each
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Algorithm 3: Pencils
• Further reduce the granularity of 

communication
– Send a row (pencil) as soon as it is ready

• Algorithm Sketch
– For each of the NZ/P planes

• Perform all 16 column FFTs
• For r=0; r<NX/P; r++ 

– For each slab s in the plane
» Perform FFT on row r of slab s
» Initiate 1-sided put of row r 

– Wait for all puts to finish
– Barrier

• Large increase in message count
• Communication events finely diffused 

through computation
– Maximum amount of overlap
– Communication starts early 

plane 0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

Start computation 
for next plane

• For 5123 grid across 64 
processors
– Send 4096 messages 

of 8kB each
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Communication Requirements
• 5123 across 64 processors

– Alg 1: Packed Slabs
• Send 64 messages of 512kB

– Alg 2: Slabs
• Send 512 messages of 64kB

– Alg 3: Pencils�
• Send 4096 messages of 8kB

With Slabs GASNet is slightly faster than 
MPI

GASNet achieves close to peak bandwidth 
with Pencils but MPI is about 50% less 
efficient at 8k With the message sizes in Packed Slabs both 

comm systems reach the same peak bandwidth 

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, 20Berkeley UPC: http://upc.lbl.gov

Platforms

Tru64 v5.1, Elan3 
libelan 1.4.20, Compaq 
C V6.5-303, HP Fortra
Compiler X5.5A-4085-
48E1K

Quadrics QsNet1 Elan3 
/w dual rail (one rail 
used)

Quad 1 GHz Alpha 
21264 (750 nodes @ 
4GB/node)

Alpha/Elan3
“Lemieux” @ PSC

Linux 2.6.13, GM 2.0.19, 
Intel ifort 8.1-
20050207Z, icc 8.1-
20050207Z

Myricom Myrinet 2000 
M3S-PCI64B

Dual 3.0 Ghz Pentium 4 
Xeon (64 nodes @ 
3GB/node)

P4/Myrinet
“FSN” @ 
UC Berkeley Millennium 
Cluster

Linux 2.4.21-chaos, 
Elan4 libelan 1.8.14, 
Intel ifort 8.1.025, icc 8.
1.029

Quadrics QsNet2 Elan4Quad 1.4 Ghz Itanium2 
(1024 nodes @ 
8GB/node)

Itanium2/Elan4
“Thunder” @ LLNL

Linux 2.6.5, Mellanox 
VAPI, MVAPICH 0.9.5, 
Pathscale CC/F77 2.0

Mellanox Cougar 
InfiniBand 4x HCA

Dual 2.2 GHz Opteron 
(320 nodes @ 
4GB/node)

Opteron/Infiniband
“Jacquard” @ NERSC

SoftwareNetwork ProcessorName
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Comparison of Algorithms
• Compare 3 algorithms against 

original NAS FT
– All versions including Fortran 

use FFTW for local 1D FFTs
– Largest class that fit in the 

memory (usually class D)
• All UPC flavors outperform 

original Fortran/MPI 
implantation by at least 20%

– One-sided semantics allow 
even exchange based 
implementations to improve 
over MPI implementations

– Overlap algorithms spread the 
messages out, easing the 
bottlenecks 

– ~1.9x speedup in the best 
case

up is good
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Time Spent in Communication
• Implemented the 3 

algorithms in MPI using 
Irecvs and Isends

• Compare time spent 
initiating or waiting for 
communication to finish
– UPC consistently spends 

less time in 
communication than its 
MPI counterpart

– MPI unable to handle 
pencils algorithm in some 
cases 
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Performance Summary
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Conclusions
• One-sided semantics used in GAS languages, such as UPC, 

provide a more natural fit to modern networks
– Benchmarks demonstrate these advantages

• Use these advantages to alleviate communication 
bottlenecks in bandwidth limited applications
– Paradoxically it helps to send more, smaller messages

• Both two-sided and one-sided implementations can see 
advantages of overlap
– One-sided implementations consistently outperform two-sided 

counterparts because comm model more natural fit

• Send early and often to avoid communication bottlenecks
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Try It!

• Berkeley UPC is open source
– Download it from http://upc.lbl.gov

– Install it with CDs that we have here
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