Optimizing Bandwidth Limited Problems
Using One-Sided Communication and Overlap

Christian Bell-?, Dan Bonachéa Rajesh Nishtalg Katherine Yelick?
{csbell,bonachea,rajeshn,yelig®cs.berkeley.edu
Computer Science Division, University of California at Berkéley
Computational Research Division, Lawrence Berkeley National Labofatory

Abstract

Partitioned Global Address Space languages like Unified Parallel C (UPC) are typically valued for their
expressiveness, especially for computations with fine-grained random accesses. In this paper we show tt
the one-sided communication model used in these languages also has a significant performance advantage
bandwidth-limited applications. We demonstrate this benefit through communication microbenchmarks an
a case-study that compares UPC and MPI implementations of the NAS Fourier Transform (FT) benchmarl
Our optimizations rely on aggressively overlapping communication with computation but spreading commu
nication events throughout the course of the local computation. This alleviates the potential communicatiol
bottleneck that occurs when the communication is packed into a single phase (e.g., the large all-to-all in ¢
multidimensional FFT). Even though the new algorithms require more messages for the same total volurr
of data, the resulting overlap leads to speedups of dvésx and 1.9x for the two-sided and one-sided
implementations, respectively, when compared to the default NAS Fortran/MPI release. Our best one-side
implementations show an average improvement%f over our best two-sided implementations. We attribute
this difference to the lower software overhead of one-sided communication, which is partly fundamental t
the semantic difference between one-sided and two-sided communication. Our UPC results use the Berke
UPC compiler with the GASNet communication system, and demonstrate the portability and scalability of the
language and implementation, with performance approaching 0.5 TFlop/s on the FT benchmark running ot
512 processors.

1 Introduction

The one-sided communication model is typically viewed as advantageous for unstructured computatior
and irregular communication patterns in terms of performance and programmability@ne-sided com-
munication is the primary mode of communication in Partitioned Global Address Space (PGAS) language
and has been integrated into the second revision of the Message-Passing Interface (MPI). Although these t
one-sided models differ semantically and operationally in the mechanisms used to enforce synchronizatio
they all aim to improve performance by decoupling synchronization from data movement. While the bene
fits of the one-sided model are most pronounced for small message data transfers where the synchronizat
and software overhead is not amortized by transfer time, we argue that one-sided communication can al
be beneficial in improving the performance of applications that are bandwidth-bound. In particular, we shov

that replacing large bulk transfers with more frequent smaller messages allows UPC’s implementation of th
one-sided model to outperform an MPI two-sided implementation on bandwidth-bound operations.

Conventional wisdom holds that communication costs in applications can be minimized by sending a sma
number of large messages, especially for cluster networks where the per-message cost can be high. This pt
tice is based on the observation that large messages have traditionally been needed to run at performance 1
the peak bandwidth. Many applications therefore adopt a bulk-synchronous communication paradigm, divic
ing program execution into clearly separated global phases of computation and communication. Two rece
trends are challenging that wisdom: network vendors are increasingly offloading communication protocol pro
cessing onto network hardware; and the emergence of one-sided communication offers unique opportuniti
to further reduce overhead by decoupling synchronization from data transfer. In some applications the comp
tational data dependencies could actually permit a large fraction of the communication to be initiated earlie
or completed later. If one can find sufficient independent computation to overlap the communication latenc
such that negligible time is spent waiting for communication completion, then the primary cost of communica-
tion becomes the software overhead required to initiate and synchronize non-blocking communication. Onc
the latency component of communication has been entirely overlapped in this manner, the transfer bandwid
achieved by an individual message becomes less important, making it feasible to trade off smaller messa
size for improved overlap.

This paper explores the hypothesis that communication can be effectively overlapped in bandwidth-sensiti
applications using one-sided communication. We use a series of communication microbenchmarks and t
NAS Fourier Transform (FT) Parallel Benchmark as a case study to compare one-sided and two-sided cor
munication models in order to validate this hypothesis. Our approach is to spread the communication of th
transpose step (i.e., the all-to-all) required by the 3D FFT throughout the computation of the local slabs an
send the data as soon as it is ready. This optimization alleviates bottlenecks in the communication and aggr:
sively overlaps the communication behind the computation. Although the total volume of data communicate
is consistent across all the algorithms considered, the number of messages per thread increa¥@s) firom
the all-to-all based implementation &@(n) whereT is the total number of threads andis the size of the
maximum dimension. The promising results motivate an even more aggressive overlap strategy that sen
O(%) messages while still keeping the total volume of data constant. As the results will show, the two-sidec
implementations that used tli&(n) algorithm achieve nontrivial gains (ovér75x) compared to the tradi-
tional all-to-all based implementation. However the versions which utilize one-sided communication achieve
an additional speedup using the algorithm that se:h(:@z}) messages. These algorithms are consistently the
best performers with speedups of uplt@x over the traditional all-to-all based implementations. We also
implement theO(”;) version in MPI, but show they cannot achieve the same performance benefits as UPC
due to the higher communication overhead. We argue that this added overhead is, at least in part, fundamer
to the two-sided model.

We use Berkeley UPG5] and MPI v1.1 B9 as representatives of the one and two-sided communication
models, respectively. Although the MPI 2.0 standa3fl] [adds a one-sided communication interface, this
interface has several semantic limitations that hinder its use in praéticanld therefore we do not consider
it further in this paper. Instead, we use use the Berkeley UPC implementation with GAgIldstdur repre-
sentative for one-sided communication. URBD|[along with Co-Array Fortran43] and Titanium R9], are
modern examples of the Partitioned Global Address Space (PGAS) language approach to parallel computir
They expose language semantics that induce a one-sided communication model: processors logically iss
direct loads and stores to the memory of remote processors using reads and writes to logically shared va
ables. GASNet is a portable, high performance communication compilation target that exposes a rich set
initiation and completion mechanisms for one-sided operations that enables the client (typically library ant
compiler writers) to compose flexible communication patterns and retain control over their synchronization
Our one-sided implementations of the benchmark are written from scratch in UPC, and leverage some min
library extensions to UPC for non-blocking bulk memory operations provided by the Berkeley UPC compiler.

2

Our two-sided versions are written in Fortran and C with MPI v1.1, starting with the standard NAS release o
the FT benchmark.

The remainder of this paper is organized as follows: In SeQiore give a brief introduction to PGAS
languages and UPC. Sectiog®and4 present the GASNet communications layer and show its bandwidth and
latency performance compared to MPI. Sectiayoes into detail about how we leverage one-sided communi-
cation to obtain significant performance improvements over MPI in the NAS FT.

2 Partitioned Global Address Space Languages and UPC

Partitioned Global Address Space languages combine a Single Program Multiple Data (SPMD) prograrmn
ming model with a global address space, which is logically partitioned to give each thread a portion of share
memory to which it has affinity. The study in this paper is based on Unified Parallel C (UPC), although the ob:
servations on communication techniques are more broadly applicable to the entire family of PGAS language
and other parallel systems providing one-sided communication. In UPC’s SPMD model, a fixed number o
threads are created at program startup, and every thread runs the same program. Each thread has both a s
for private local memory and some partition of the shared space to which @ftaigy. A private object may
only be accessed by its corresponding thread, whereas all threads can read or write any object in the sha
address space. The partitioning of the shared space into regions with logical affinity to threads allows prc
grammers to explicitly control data layout, which is then used by the runtime system to map threads and the
associated data to processors: on a distributed memory machine, the local memory of a processor holds b
the thread’s private data and the shared data with affinity to that thread.

There are many commercial and open-source compilers available for&JRG P8, 32, 40]. In this paper
we used the portable, high-performance Berkeley UPC comf@iewhich translates UPC to ISO-compliant
C using a compiler based on the Open64 infrastruciisg [The translator performs both serial and parallel
optimizations .3, 30, 54], although in this paper we will work with applications that are carefully hand-tuned
and therefore do not take much advantage of the high-level optimizations. On a shared memory machin
accesses to the UPC shared address space translate into conventional load/store instructions. On distribt
memory machines, which are of interest in this paper, such accesses translate into calls to the Berkeley GASH
layer [7]. Some of the application-level optimizations presented in this paper make use of Berkeley-specifit
extensions to the UPC languadi &nd although these extensions are not part of the current UPC language
specification, the results in this paper demonstrate their benefits and motivates their likely inclusion in the ne;
language revision.

3 GASNet Communications Subsystem

GASNet provides a portable, language-independent communication interface designed as a compilati
target for PGAS languages. GASNet delivers communication performance very close to the raw hardwat
peak across many interconnects, effectively leveraging platform and network-specific features such as RDM
support and block transfer engines.

Figure 1 illustrates the basic abstraction stack of the Berkeley UPC, GCC/UPC+UBgRard Tita-
nium [49] compilers over GASNet.

The GASNet API provides point-to-point data transfers that are fully one-sided and decoupled from inter
thread synchronization, with no relative ordering constraints between outstanding operations (in contrast
other one-sided communication interfaces such as ARMg]).[GASNet’s point-to-point communication
API includes simple blocking gets/puts, and several flavors of non-blocking data transfers with a flexible an
expressive set of synchronization primitives crafted to support sophisticated communication optimizations
The GASNet implementation is designed in layers for portability: a small set of core functions constitute the
basis for portability, and there is a reference implementation of the complete API written entirely in terms of

3

this core. In addition, the implementation for a given network @bedui) can be tuned by implementing

any appropriate subset of the general functionality directly upon the hardware-specific primitives, bypass

ing the core-based reference implementation. Our research has shown that the layered design approac!

effective at providing robust portability as well as high-performance, with UPC performance comparable tc

vendor-provided compilers on architectures ranging from loosely-coupled clusters with a near-commodit

network [L2] to tightly-coupled MPP systems with a hardware-supported global memory system [
The GASNet interface has been natively implemented

on Myrinet (GM) [41] , Quadrics QsNetl/QsNetll _

(Elan3/4) B6], InfiniBand (Mellanox VAPI) B1, 37], IBM

SP Colony/Federation (LAPIBE] , Dolphin (SISCI) R2, Compiler-specific runtime system

Cray X1 (shmem)47] and SGI Altix (shmem) I]. Aside

from these high-performance instantiations of the GASNe

interface, there are also fully portable GASNet conduits over GASNet Core API

MPI 1.1 (for any MPI-enabled HPC system not natively sup-

ported), GASNet on UDP (for any TCP/IP network, eg. Eth-

ernet), and GASNet for shared-memory SMP’s lacking in-

terconnect hardware. Our GASNet implementation is writ-Figure 1. GASNet Communications System: the

ten in standard C and is very portable across architectureggirow, AM-based Core APl implements the entire

and operating systems — thus far it has been successfulBystem but can be bypassed by the Extended API

used on over fifteen different CPU architectures, twelve dif-to exploit native hardware features

ferent operating systems, and twelve different C compilers,

and porting existing GASNet conduits to new UNIX-like

systems is nearly effortless. S&&] for further implementation details.

4 Performance Advantages of One-Sided Communication in Microbenchmarks

Partitioned Global Address Space languages are sometimes considered suitable only for shared mem:
hardware such as Symmetric Multiprocessors (SMPs), Distributed Shared Memory machines (e.g., the St
Altix [1]), or machines with global address space support integrated into the processor (e.g., the Gy X1 [
However in this paper we demonstrate that the one-sided communication model underlying these languag
is also a more effective match to modern cluster network hardware than two-sided message passing interfa
such as MPI.

The disadvantages of the MPI two-sided message-passing model are summarized in the following thre
points:

e Messages sends and receives must be matched to complete a transfer. The implementation is respons
for matching the MPI communicator, message tag and sender id between the sender and receiver, a
the overhead of this matching can impose a significant performance penalty for small and medium size
messages.

e MPI guarantees point-to-point message ordering, despite the fact that many current and future HPC ne
works lack point-to-point ordering guarantees in hardware. Other stugie39, 53] have shown there
can be a non-trivial cost associated with enforcing ordering semantics upon fundamentally unordere
network hardware.

e The semantic requirement for active participation from application-level code on both sides of the com:
munication implies that observed latency in an MPI application may be significantly longer than pre-
dicted by a best case scenario - i.e., an application that is inattentive to the network may perform poorl
even on a system with low best-case MPI latency.

4

High-quality MPI implementations on cluster hardware generally use a combination of algorithms to pro-
vide the required message-matching semantics and also provide good performance over a large range of 1
sage sizes. Theageralgorithm (which is generally used for small messages) optimistically sends the data and
messaging metadata to an anonymous buffer on the target process, which later performs message matck
and copies the data to the user buffer. This approach minimizes the wire-time latency, but imposes CPU ai
memory bus overheads for the extraneous data copy operation and hence is unsuitable for sufficiently lar
messages where the copy costs would dominate. r@imgezvouslgorithm (generally used for larger mes-
sages) initially sends only the metadata to the remote process, which performs the matching and later initiat
a zero-copy transfer of the data. This approach minimizes data copying overheads, but imposes the latency
at least one additional roundtrip on the wire, and hence is unsuitable for small messages.

A key advantage to the one-sided communication model is that no such tradeoff is required, because tl
initiator always provides complete information describing the data transfer to be performed. There are n
overheads imposed by matching or synchronization semantics, and the implementation is free to perform tl
data transfer using the most efficient mechanism available. On modern cluster networks, this usually translat
to the use of Remote Direct Memory Access (RDMA) hardware support, which allows efficient remote acces
without intervention by the remote host CPU.

4.1 Latency Advantages of One-Sided Communication

One of the key advantages of a one-sided commu-

nication model is that all relevant information about tanium2/Elan4 Roundtrip Latency

12
a communication operation is provided by the initia-

4
tor — information is never required from the remote 1 /ﬁé//
user code to complete message delivery. GASNet's: el
one-sided data transfer operations are completel
decoupled from inter-process synchronization, en-
abling data transmission to often begin immediately
upon operation initiation (subject only to network
congestion) and proceed autonomously from any ac-£
tion at the target process. For example, in a remote®
put operation the initiator can always transmit the
remote destination address along with the data, pro- - - -
viding a close semantic match to the requirements of ! ° Transter Sige (bytes) 10000
high-bandwidth, zero-copy RDMA hardware. Con- Figyre 2. Latency of GASNet vs. MPI on Quadrics Eland
versely, a similar operation in MPI message-passing
requires somehow retrieving the destination address from a matching receive operation posted by the targ
user process (possibly at some point in the future) before the transfer can be completed. This matching o
eration often dictates the performance of MPI implementations, and vendors consequently invest significa
effort in optimizing its cost.

The FT application is a bandwidth-limited problem, however the effective use of overlap in our imple-
mentations depends crucially on the per-message CPU overheads associated with initiating and completi
non-blocking operations. These overheads can be difficult to measure directly, however comparisons of sma
message latency performance on a given network can provide insight into the effects of software overhea
because it tends to comprise a large fraction of small-message latency. In network processor-based sc
tions such as Quadrics QsNetl/ll, the network interface is capable of autonomously completing MPI messag
matching operations. Such approaches generally outperform host-based solutions that require attention fre
the remote host CPU (e.g., Myrinet and InfiniBand). We expect other networks to follow the lead of Quadrics
in this type of MPI protocol offload, and therefore consider the Quadrics network in this section for our latency

7
[

trip latency (microSec
(down is good)

d

1 —¢—MPI Isend/Irecv ping + 0-byte ack
== MPI send/recv ping + 0-byte ack
—o— GASNet put_nb + sync

GASNet get_nb + sync

o P N W A OO O N O ©

analysis, since it provides the best-case for MPI message-passing latency.

Figure2 compares theound-triplatency performance over varying data transfer size of GASNet’s Quadrics/E
conduit with Quadrics MPI on an Itanium2/Elan4 system. The GASNet tests measure the round-trip latency t
issue a GASNet put or get operation and block for round-trip completion. The MPI tests measure the round-tri
latency for a ping-pong test where the initiator sends a message of the given size, and the remote side issues
byte acknowledgement message. Performance is measured using both the bM&kii®eOd/MPI _Recv)
and non-blockingNIP1_Isend/MP1 _Irecv) MPI message passing primitives.

The Quadrics network hardware provides support for offloading MPI message matching overheads on
the NIC processor via the Elan Tports interface, freeing the host processor from most duties associated wi
the MPI message queue. However as evidenced by the figure, there is still a pronounced latency differen
between this interface and the performance achievable through the lighter-weight, raw RDMA elan interface
(elan _put/elan _get) targeted by the GASNet put/get implementation on Quadrics. One-sided communi-
cation is a better semantic match to RDMA-enabled hardware, and thus induces lower software overhead a
delivers better latency performance for small and medium-sided messages.

4.2 Flood Bandwidth Advantages of One-Sided Communication

Figure 3 compares the flood bandwidth per-
formance over varying message size of GAS-g
Net's InfiniBand/VAPI conduit with OSU MVA-
PICH [36], an extensively tuned implementation
which is widely considered to be the best avail- ™
able MPI on InfiniBand. GASNet consistently and «
significantly outperforms MVAPICH on InfiniBand

1
©
<}
S

: Opteron/:lnfiniB_and Flood Bandwidth

: | —®—GASNet non-blocking put
800 +— —0—MPI ISend/IRecv

(1 MB =2"20 b

th (MB/s)

because the GASNet one-sided put/get semantic%soo R / / BEEEEER Z
are fundamentally a better match for the capabili-:gm - / / — s
ties of the underlying RDMA hardware than MPI's ®wl] / 1 u
two-sided message passing semantics. GASNets | / / |

put/gets turn into simple, fully one-sided RDMA op-
erations in the common case, and therefore reap the ™|
hardware peak performance, whereas MPI pays in 01—05 O RS e S
performance for enforcing MPI’s ordering and mes- * DuaTranterSze ortes) o o

sage matching semantics. GASNet’s good perfor- Figure 3. Bandwidth of GASNet vs. MPI on InfiniBand

mance on pinning-based RDMA network hardware

such as InfiniBand and Myrinet can also be attributed to Firehdlseolir novel distributed algorithm for
efficiently managing memory registration on these networks. Firehose effectively delegates the control c
registration resources to the RDMA initiators, successfully exposing one-sided, zero-copy communicatio
as a common case, while minimizing the number of host-level synchronizations required to support remot
memory operations and amortizing the cost of synchronization and pinning over multiple remote memon
operations. Another notable feature of the InfiniBand flood bandwidth is the performance drop-off beyonc
256KB data transfer size - this artifact is due to a performance bug in the Mellanox hardware, which the
GASNet/VAPI conduit has been tuned to avoid.

This semantically-induced bandwidth performance gap between MPI's message passing and GASNe
one-sided communication is observable across a number of modern RDMA-enabled cluster interconnec
Figure4 compares the flood bandwidth achievable with GASNet's one-sided put/get RMA primitives against
MPI_Isend/MPI _Irecv message-passing for a 4KB and 512KB data transfer size across a number of pro
duction cluster supercomputers (as detailed in the appendix). The bar height is normalized to the theoretic
peak bandwidth of the system (a minimum of the interconnect link speed and the I/O bus speed), and absolt

1004 !

10 1000 100000 10000000
sssssssssss

100 % Flood Bandwidth for 4KB Messages Flood Bandwidth for 512KB Messages

815 MB/s 223 MBls 100% 7 859 MB/s 851 MB/s 229 MB/s

90 % 256 MB/s 225MB/s 796 MB/s 799 MB/s

231 MB/s 90 %
679 MB/s 714 MB/s 246 MB/s

80 %

80 %

671 MBIS 659 MB/s

70 %
70%

177 MB/s 495 MBls 152 MB/s 0

60 %

426 MB/s
50 %

40 %

40 %
252 MB/s

(up is good)

30 % 30%

Percent of Hardware peak Bandwidth
Percent of Hardware peak Bandwidth
@
3
B

(up is good)

20 % 20 %

10 %

@ GASNet & MPI 10% GASNet aMPI H

0%
0%
Alpha/Elan3 Itanium2/Elan4 x86/Myrinet Power5/InfiniBand Opteron/InfiniBand Alpha/Elan3

Itanium2/Elan4 Xx86/Myrinet Power5/InfiniBand Opteron/InfiniBand

Figure 4. Flood Bandwidth of GASNet vs. MPI for 4KB and 512KB Messages

bandwidth performance is also shown. The figure demonstrates that for “large” messages, both one-sided &
message-passing communication mechanisms typically saturate to similar peak bandwidth values (the or
exception being due to the InfiniBand hardware performance bug described in the previous section). Howeve
one-sided communication consistently provides a significant performance advantage at “mid-ranged” sizes
about 1KB - 100KB, where the raw payload transmission times are often too short to fully amortize or overlay
the MPI message matching overheads. Similar patterns have been observed on other systems for such “nr
ranged” message sizes. Recent stud2@s ¢f MPI usage across a range of real-world scientific applications
have found that “mid-ranged” message sizes dominate many production applications and become even mc
prevalent at larger scales, motivating the importance of this range of message sizes. As described in subseqt
sections, these message sizes are also often crucial in achieving efficient communication overlap.

5 Optimizing Bandwidth-Limited Applications

In this section we consider a problem that is often hailed as the canonical example of a problem limited b
bisection bandwidth, the 3D FFT. Superficially, none of the latency advantages of a one-sided model woul
appear to be relevant, because the key to performance is the efficiency of a cross-processor transpose
happens between phases of the FFT. As typically coded, the messages are all large and have a fixed ¢
that is known in advance, since it is a simple function of the problem size. The FFT kernel is used in man
scientific applications and is a critical operation in its own right, but it also reflects a more general class o
algorithms that are a challenge to scalability and performance. Machines with inadequate bisection bandwid
typically suffer relative to those with full crossbars on applications requiring a large volume of many-to-many
or all-to-all communication44].

5.1 NAS FT Benchmark

The NAS FT benchmark?] implements a partial differential equation using a series of repeated forward
and inverse Fourier Transforms over three dimensions. Since all dimensions are represented linearly in me
ory, the sets of 1-D FFTs must be transposed in memory in order to calculate the complete 3-D FFT, whic
translates into three sets of 1-D FFTs followed by transpositions. The data can be decomposed across para
threads either in planes along one of the dimensions (1-D layout) or in two dimensional slices (2-D layout
when the number of threads exceeds the number of planes. As implemented in the original NAS Benchmar
two of the dimensions are computed and transposed locally while the remaining single dimension incurs
global exchange among all processors, after which the remaining FFT dimension can be computed. The re
erence implementation of the NAS FT Benchmark is realized in Fortran and the communication uses MF
message-passing. It has undergone several revisions since its original release and can be considered a mz
benchmark. The only significant communication step in the 1-D layout version of the problem is implementec

7

by the MPI All-to-all collective, a bulk communication operation where each thread exchanges its portion of
the 3-D FFT with every other thread. The existing exchange (All-to-all) version of this benchmark separate:
communication and computation into distinct phases: after computing the FFT in one dimension over all it:
planes, every thread locally transposes the computed data into an ordering suitable for the exchange operati
after which the data is re-transposed to complete the remaining FFTs. The communication can be placed t
tween alocal 1D-FFT and a local 2D-FFT or vice-versa and while the operation requires a transpose, the loc
2D-FFT makes use of a cache-blocked algorithm to compute both the unit and non-unit stride dimensions.

5.2 Expressing NAS FT with One-sided Communication in UPC

If modeled according to the original NAS Fortran/MPI implementation, a straightforward one-sided UPC
implementation could perform the exchange using either point-to-point bulk put operations or alternatively
use the collective operations recently added to the UPC lang&dfjeSince large exchange operations are
bandwidth-bound and are not noticably optimized beyond the performance of point-to-point communication
we expect UPC performance to at least match the performance of the original NAS version given the point-tc
point performance results presented in sectiowhereas the data movement and communication pattern are
similar in both the one-sided and two-sided variants of this implementation approach, one-sided communic:
tion only differs in that each communication call provides complete information to the communication library.
Unlike two-sided message-passing where the target thread must provide the target address, one-sided com
nication maps well to networks that can autonomously delivery data — the entire communication can procee
without involving the target processor. However, the size of the individual messages and overall communice
tion in the exchange is sufficiently large to hide the implied synchronization costs imposed by the two-side
model.

5.3 Optimizing NAS FT on Modern Networks

Issuing a single collective communication to globally ex-
change all FFT planes makes use of large messages with the
goal of maximizing the available bandwidth and simplifies
the programmer’s task in observing local dependencies: two
of the three FFTs are complete prior to the exchange and
the last FFT can begin once the exchange completes. The
performance downside, however, arises from the increasing Pe
monetary cost and complexity in providing full network bi-
section bandwidth as the amount of nodes involved in the
exchange increases. Networks that do not provide full bi- Thread 1's planes
section bandwidth at high node counts can benefit from any D
operation that can replace or at least amortize the cost of a
global exchange operation. Those that do provide full bi-
section bandwidth at large scale can still reduce the cost Of Thread o€ pianes
a global exchange if the communication network supports
asynchronous communication, because portions of the ex- N
change communication can be hidden behind computatior; 2U"® > FT data decomposition for a 4x4x4 cube
Since our target networks support such operations, our prov 2 freads
posed approach is to decompose the FFT computation and communication into smaller pieces that perr
overlap. In doing so, we have employed and implemented the FT benchmark by decomposing the two dime
sional planes of the 1-D layout into small and even smaller contiguous pieces. These implementations a
summarized by the following two approaches:

Plane

e Overlap Slabs Overlapping slabs is a method of decomposing the 3D-FFT to reduce the amount
of time spent in communication-bound operations by overlapping the communication cost of sending
previously computed slabs with the computation of remaining slabs. A slab is defined to be the portior
of each FFT plane that has affinity to a single thread and will be sent to a single remote thread, suc
that communication incurs only a single point-to-point operation (see Figurén the original NAS
implementation, slabs destined for each remote thread are packed to be made contiguous prior to t
global exchange operation.

e Overlap Pencils The pencils-based approach is similar to the slabs-based approach, except that it fur
ther reduces the granularity of communication and overlap, sending more and smaller-sized messagt
Point-to-point messages of a single FFT row are sent while computation happens over the next rov
Figure6 shows the major communication and computation steps in partitioning the 3-D FFT. Since the
cube’s decomposition assigns 2D-planes to each thread, each thread begins by computing the first of
FFT computations without communication in the non-contiguous dimension. Following a transpose, the
set of contiguous FFTs is computed, and each row is computed as the previously computed row is se
to the new owning thread. The next owning thread is thread who requires affinity to the row as a resul
of transposing the cube for the second (and last) time. A barrier signals the point at which each threa
has finished its row computations, which allows the final FFT dimension to be computed following a
local transpose.

1D-FFT Columns 1D-FFT Pencil = 1 Row

— Pencil 1D-FFT

Pencil Send to Thread 0
— Pencil 1D-FFT

= Pencil Send to Thread 0
— Pencil 1D-FFT
Pencil Send to Thread 0

Cachelines

[VVYNYYYVVYYYV]

— Pencil 1D-FFT

] Pencil Send to Thread 1

— Pencil 1D-FFT
Pencil Send to Thread 1

Last 1D-FFT
(Thread 0's view)

Figure 6. 3D-FFT by communicating overlapping pencils

Tablel summarizes implementation algorithms and provides a measure of overlap efficiency as a ratio of th
data that can be overlapped in one plane over the data that is computed in one plane based on the dimensio
the FFT cube:(®). The single exchange approach used by the default NAS FT implementation is represente
by UPC Exchange Both overlap algorithms have communication startup costs where the first and last units
of communication, either slabs or pencils, cannot be overlapped with additional computation. Also shown i
the number of total network messages sent by each thread in order to complete the global exchange. As ¢
be expected, the finer the data decomposition, the greater the message count (up to a factor of the square
the input cube’s dimensions for the Pencils algorithm). Also, since the volume of the data exchanged remair
constant across all versions of the benchmark, sending more messages also implies that the messages
smaller.

6 Results

Performance results in this section are shown for three popular RDMA-based interconnect technologie
InfiniBand, Quadrics/Elan and Myrinet. The FT benchmark is fairly intensive in its floating point requirements

9

FT Implementation # Messages per thread\ Per-plane Overlap Efficiency

UPC Exchange THREADS 0
UPC Overlap Slabs THREADS * trriaps | 1 — 2
i 2 THREADS
UPC Overlap Pencils TAREADS R
Table 1. Summary of UPC FT Algorithms as a function of the dimension of the FFT cube (n3)

and since each system uses different processors, the overall MFlops results that determine the time to so
a series of 3D FFTs cannot be used as a basis to compare interconnect technologies. Rather, the vari
of interconnect solutions and generations are graphed to demonstrate that the communication optimizatio
employed by FT UPC generalize to a large class of high performance system configurations.

In order to measure the effectiveness of our approach over the mentioned RDMA-based networks, we wro
UPC and MPI-C versions of global exchange, Overlapped Slabs and Overlapped Pencils with the goal «
comparing them to the original NAS Fortran/MPI Benchmark. To prevent performance offsets emanating fron
serial FFT performance variance across different languages, all benchmarks use a 1-D FFT decomposition
the domain and compute the 1-D FFTs using the FFTW pack2§gWhich consistently outperforms the
Stockholm FFT used in the original NAS Fortran implementation by a small margin on all the platforms we
encountered). The MPI-C and UPC versions of the benchmark are similar except for the language and/
library features they employ for non-blocking communication. UPC uses GASNet’s non-blocking operations
whereas MPI-C useglPIl_Isend combined with preposting of receive buffers well in advance such that no
overheads resulting from unexpected messages are incurred by the underlying MPI communication layer. £
but the original default Fortran with MPI version of the benchmark employ a configurable padding paramete
that allows one of the power-of-two dimensions in the FT class to be padded in order to more effectively
use the memory hierarchy. We have found the padding to be most effective when computing FFT over th
non-unit-stride dimensions.

The MPI wallclock timer is used to profile the MPI implementations, and hardware cycle counters of sub-
microsecond accuracy are used to time the UPC implementations. The data reported is the maximum perf
mance across five trials - the standard deviation across the various trials was very low.

6.1 UPC Non-blocking Slabs and Pencil Results

The first set of results in Figuréshow the performance speedup of the UPC implementation of Exchange,
Slabs and Pencils over the original NAS Fortran implementation. Clearly, the approach of overlapping com
munication and computation over smaller units of the FFT is beneficial on all the tested interconnects an
actually improves over newer generations of the same interconnect (Elan/Quadrics). Average speedups are
the order of 80%, with the most recent interconnects (InfiniBand and Elan4) showing 90% speedups. The:
speedups essentially demonstrate that overlapping slabs and pencils can produce higher overall efficiency
systems that allow networking and computational resources to be used concurrently and independently.

In comparing UPC Pencils to Slabs, all platforms show Pencils to be slightly faster. While the improvemen
is never beyond 10%, Pencils notably differ from Slabs by sending many more messages. This is contrary
the typical approach of sending fewer larger messages and validates that the GASNet communication libra
can effectively maintain or improve communication performance as it decreases the message size and increa
the messaging rate.

In order to measure Pencil’s impact in increasing the messaging rate, we identified two areas within th
benchmark where Slabs and Pencils produced noticable differences across all platforms. The remaining 1
FFT that occurs after all rows are communicated requires each received row to be reordered for a non-ut
stride FFT. With Slabs, consecutive elements in the non-unit stride appear on different slabs, whereas Penc
allow the rows to be sent into an ordering that anticipates the remaining non-unit stride FFT and effectivel
reduces the stride to the size of a pencil. On systems such as the Alpha with a small TLB and/or high TLB mis

10

45

T T T
I Time for Row Communication
— [Time for Last 1-D FFT

N
[N}

T T T T T T
- UPC Exchange 40
[uPC Non-Blocking with Slabs
I:l UPC Non-Blocking with Pencils 351 P . . i

N}
T

-
©
T

I
w
=]

T
I

25+~ o

=

o
T
I

seconds

Speedup over original NAS FT Fortran
=
IS
T
Il

=
)
T
I

-
T
I

oy 6 © 2 6 2
et pend 2° gron3 22 grand 5 gt 2 glant 2

Myrinet 64 InfiniBand 256 Elan3 256 Elan3 512 Elan4 256 Elan4 512

Figure 7. Speedup of UPC Exchange, Overlap Pencils and
Overlap Slabs over Original Fortran FT Figure 8. UPC Slabs (S) and UPC Pencils (P): Communica-
tion overhead and resulting computation performance

penalty, the smaller stride improved computational performance by reducing pressure on the memory syste
and minimizing the number of TLB misses. Pencils therefore reduces the amount of time spent computin
the final FFT, although this improvement comes at a cost of a higher total message count. These combin
costs are shown in Figui@for each platform, which illustrates that the time Pencils recovers in reordering
is greater than the increased overhead of sending more messages. The overheads imposed by the incr
in message rate and the decrease in message size are well amortized by the network through the use of
GASNet communication library. These overheads include operation initiation and completion costs as we
as the inter-operation gap which represents the minimum amount of time between two consecutive messa
injections. These overheads are kept relatively low considering that many more messages are sent in Pen:
compared to Slabs and that these messages are actually much smaller. For example, for FT’s Class D probl
size at 256 processes, each process sends 1024 messages of 128KBytes with Slabs and 8192 messag
16KBytes with Pencils.

6.2 UPC and MPI Comparative Results for Overlap

In order to evaluate the effectiveness of our overlapping techniques with regards to one and two-side
communication, we also implemented the overlapped non-blocking Slabs and Pencils approaches for MPI. Tl
MPI implementations make use of non-blocking sends and prepost receive buffers in a communication pha
before non-blocking communication is initiated to maximize the potential for communication overlap and
minimize the amount of unexpected MPI messages and extra memory copies. Under UPC, all communicatic
is one-sided — the initiator provides both the source and destination addresses, and the non-blocking operati
return an explicit handle which is later synchronized. Results comparing the UPC and MPI implementation
of these non-blocking techniques are shown in Figuireterms of total time each version of the benchmark
spends in communication (all versions are always within 10% of each other for the times spentin computation
Perfect overlap would be represented as 0 seconds, and any time above 0 seconds represents the combi
non-overlapped cost of initiating and completing the non-blocking operations.

The Myrinet and Elan4 systems are the only configurations where the MPI implementations remain rela
tively competitive with those measured on UPC'’s FT implementations. The MPI configurations on other plat:
forms either spent unacceptable time dealing with non-blocking communication messages or simply crashe
Although the MPI implementation of Overlapped Slabs and Pencils is compliant with the MPI 1.1 speci-

11

312.8 34.1 28.6

12 T T T T T T
o B uPC Slabs
[uPC Pencils
10+ []MPISlabs 8
[]MPIPencils
sl i
v _
2
S 6r —~]
] n
® S
c
[0]
S _
41 e n
(%]
g
o
o
2t =]
0 b 6 56 12 56 12
wyrnet \“‘\r\'\aaﬂd z gan3? glan3® glant 2 gand >

Figure 9. Time spent in Communication Initiation and Completion for Overlapped UPC and MPI

fication, the aggressive use of asynchronous point-to-point communication is not representative of the we
MPI applications are typically written. While preposting buffers is always a good general strategy to preven
unexpected message costs, preposting and initiating several hundred communication operations on netwo
capable of highly asynchronous operation relies on correct and efficient MPI receive queue handling. The MF
results raise some obvious scalability concerns with regards to the number of point-to-point messages and t
total amount of nodes exchanging messages. For example, for FT's Class D problem size at 256 proces:
using Pencils, each node sends and receives 2K messages for each plane it owns in the 3D cube decompos
and as such, leads to a sharp increase in the length of the MPI receive queues. Performance problems
particularly apparent in the Opteron/InfiniBand system, where the MVAPICH implementation has scalability
and correctness problems: the Pencils approach causes the application to crash and the Slabs approach ce
the library to spent all of its time completing asynchronous sends and receives in \Ma&ta! primitive.

On this same InfiniBand platform, the one-sided UPC benchmark reaches its lowest communication overhe;
times for both Slabs and Pencils, indicating that the interconnect technology is certainly capable of producin
significant speedups using either Pencils or Slabs Overlap.

UPC'’s overlapped approaches fare best on the more recent interconnect technologies we have benchmar}
where the commmunication times demonstrate a high messaging rate and low overhead for small-sized mq
sages. Figuré0 presents a summary of the best result we could obtain on each platform for the default NAS
Fortran implementation, the best overall MPI and best overall UPC implementations. All platforms use the
largest FT problem size (Class D) with the exception of Myrinet where the problem size was too large to fi
at 64 processors and on InfiniBand where the MPI implementation’s unreliable handling of the largest clas
required the smaller Class C to be used. In all cases, the Best MPI constitutes of the better of either the NA
Fortran/MPI, Exchange-based MPI/C, Slabs MPI/C or Pencils MPI/C and happens to be Slabs MPI/C eac
time. This is not surprising since all the networks are capable of some form of asynchronous operation whei
any overlap is better than no overlap. The Best UPC happens to always be the Pencils version when compa
to the Exchange-based and Slabs approaches. In many cases, the overlapped versions of the code nearly dc

12

1100 T T T T T T
I Best NAS Fortran/MPI

- Best MPI (always Slabs)
900k |] Best UPC (always Pencils) , |

1000~

800 - — 7

700

600

500

MFlops per Thread

400

300

200

100

gard? @S a0 B

N\\;(\r\e‘ oA

2
\nﬁ\ﬂ\Ba“d

Figure 10. Best MPI and UPC Results

the performance of the original NAS FT implementation. While the original NAS FT differs from the other
versions since it is based on Fortran, the other implementations share 90% of the code base with the over
variants. In addition, the UPC Slabs and Pencils approaches differ in only about 10 lines of code, indicatin
the relative ease of programming for performance using finer-grained overlap in the one-sided communicatic
model.

GASNet’s low overhead for initiating many non-blocking communication operations allows a performance
advantage through computation/communication overlap, trading latency associated with large bandwidtt
bound operations such as the global exchange for minimal small message initiation and completion cost
The synchronization and messaging overheads imposed by the two-sided message-passing model are sh
to come at a noticeable cost, and with some MPI implementations seriously limit the effectiveness of our ovel
lap optimizations. The one-sided model successfully reduces these overheads and delivers good small mess
pipelining message rates which largely determine the overlap efficiency of the benchmark on RDMA-capabl
networks.

7 Related Work

As we have shown, large performance improvements are possible by distributing the communication of
erations throughout an application rather than segmenting the algorithms into a computation phase followe
by a communication phase. This is evidenced by the improvements of our Pencils and Slabs implementatio
over the more traditional all-to-all implementations. Analyzing and optimizing the all-to-all communication
pattern needed for a large parallel Fourier transform has been the subject of many papers. The analyses h
ranged from modeling the performance on small commodity clustér2]] through using highly specialized
networks [L4, 20, 48).

Many groups have also worked to tune the collectives implementations in network libraries. Automatic
tuning efforts P4, 52] generate a set of good implementations of a collective operation and then choose the
best one based on a search through the implementation space. Network vendors have also spent consis

13

able efforts tuning their communication libraries so that they can leverage hardware-supported coll&ctives [
However these methods generally assume that the algorithms are segmented into computation and comr
nication phases. Thus, these solutions only optimize the communication phases and rely on communicatic
communication overlap. Part of our hypothesis is that by analyzing the communication pattern along with th
computation pattern, the communication can be spread through out the computation, relieving communicatic
bottlenecks that can occur during a communicate-only phase and deliver better overall performance throu
overlap.

Analyzing multiple communication calls within applications rather than just the communication itself has
been the topic of many research groups. Yuan eb4ldescribe algorithms for analyzing the communication
requirements of an application and then statically manage the communication metadata using knowledge of t
underlying network. However, their work is mainly targeted at optical networks which have different semantics
about how connections need to be setup than conventional interconnects. lancB@tcaisider the benefits
of breaking large messages into smaller ones to automate overlap, although their message segmentation is ©
implicitly by the compiler and therefore subject to the limitations of static analysis. Our implementations are
based on explicit overlap where the programmer directly expresses the lack of data dependencies. Dane
et. al [L8] have described techniques similar to our own to explicitly spread the communication across the
computation to achieve better performance. However their main focus is on applications written for a two
sided model, which is very similar to our MPI Slabs and MPI Pencils algorithms. Danalis et. al also show the
advantages of using RDMA and communication-computation overlap and show how utilizing a lower level
communication library can result in better performance. The significant difference between our work anc
theirs is that we argue that applications written using one-sided semantics can realize even more performar
gains because of the inherent advantages of the one-sided model, as evidenced by the difference between |
Pencils and Slabs and UPC Pencils and Slabs. In addition, our work demonstrates the effectiveness of the
techniques on a variety of cluster interconnects and shows that this approach scales to large processor cot
and large problem sizes, further extending and validating their findings.

Finally, previous work on implementing the NAS parallel benchmarks in UBS dnd Co-Array For-
tran [L5] was based on translating the MPI or OpenMP versions. In this work, the UPC implementations were
written from scratch using a one-sided paradigm and thus are able to more effectively leverage the comm
nication features of UPC/GASNet and demonstrate the capabilities of the system. We've applied some ¢
the ideas from this work to our implementation of NAS FT in Titaniub8][(which also uses GASNet for
communication) and achieved similar speedups over the MPI versions.

8 Conclusions

We have presented a detailed investigation into the relative performance of one-sided and two-sided comm
nication, using UPC on GASNet for one-sided communication and MPI v1.1 for two-sided message-passing
Our microbenchmarks demonstrate that GASNet significantly outperforms MPI in latency performance an
small to mid-size message bandwidth. As expected, both models reach the same asymptotic bandwidth
large message sizes on most platforms, but GASNet reaches the peak for smaller message sizes than MPI.

Our results suggest that one-sided communication offers an opportunity to revisit some commonly share
beliefs induced by two-sided message passing. Among these, one typical assumption is that performan
is optimized by sending fewer and larger messages to asymptotically approach peak bandwidth on clust
networks. The one-sided model provides alternative mechanisms whereby small messages can provide lov
startup and completion costs and that the programmer can retain explicit control over synchronization b
separating it from data movement. Applying these techniques to the well-known NAS FT benchmark, we
have shown improvements in two dimensions. First, the low startup and completions costs that determir
the potential for efficient communication and computation overlap have produced almost 2x speedups ov:
the existing reference NAS FT Fortran implementation. Second, by aggressively pipelining smaller-size:

14

messages and not imposing any particular synchronization or ordering constraints over these messages,
one-sided approach as implemented in Berkeley UPC/GASNet has produced more efficient and consiste
results than the two-sided approach and various MPI implementations. These results are consistent across f
different cluster networks (Myrinet, Infinband, and two generations of Quadrics) and highlight the viability of
UPC as a high performance programming model for clusters.

These results provide evidence that the bulk-synchronous, message-passing style of communication poj
larized by MPI may not be the most effective use of cluster networking hardware. As the number of processol
grows in future machines, and networks become a more significant component of system cost, optimizatiot
such as communication and computation overlap, use of small messages to increase the depth of mess
pipelines, and reductions in communication overhead through one-sided communication models are likely 1
increase in importance.

References and K. Yelick. A Performance Analysis of the Berkeley
UPC Compiler. InProceedings of the 17th International
Conference on Supercomputing (IC®)ne 2003.

[13] W. Chen, A. Krishnamurthy, and K. Yelick. Polynomial-
time algorithms for enforcing sequential consistency in
spmd programs with arrays. I6th International Work-
shop on Languages and Compilers for Parallel Comput-
ing (LCPC) 2003.

[14] C. Y. Chu. Comparison of two-dimensional FFT meth-
ods on the hypercube. IRroceedings of the third con-
ference on Hypercube concurrent computers and appli-
cations pages 1430-1437, New York, NY, USA, 1988.
ACM Press.

[15] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-
Crummey. Co-array Fortran performance and potential:
An NPB experimental study. Ih6th International Work-
shop on Languages and Compilers for Parallel Process-
ing (LCPC) October 2003.

[1] SGI Altix 3000 Supercomputerhttp://www.sgi.
com/products/servers/altix/

[2] D. H. Bailey, E. Barszcz, J. T. Barton D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS
Parallel Benchmarks.The International Journal of Su-
percomputer Application$(3):63—73, Fall 1991.

[3] J. Beecroft, D. Addison, D. Hewson, M. McLaren,
D. Roweth, F. Petrini, and J. Nieplocha. QSNETII:
Defining high-performance network desigiEE Micro,
25(4):34-47, 2005.

[4] C. Bell and D. Bonachea. A new DMA registration
strategy for pinning-based high performance networks.
In Workshop Communication Architecture for Clusters

. 2179-003.
ing Support for Global Address Space Languages on the . i i
Cray X1. In19th Annual International Conference on Su- [17] Cray X1 system overview. CrayDoc Manual S-2346-23.

percomputing (ICS)June 2004 [18] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany.

: i Transformations to parallel codes for communication-
[6] ;EI]ZOI\B/erkeley UPC Compiler, 2002.http://upc. computation overlap. IBSupercomputing 2003Novem-
' e . ber 2005.

[7] D. Bonachea. GASNe't speC|f|c.at|or_1. Technical Report [19] K. Datta, D. Bonachea, and K. Yelick. Titanium per-

CSD-02-1207, University of California, Berkeley, Octo- f ial- . |

ber 2002. ormance and potential: an NPB experimental study. In
18] D. Bonachea. Proposal for extending the UPC memory proceedings of the_18th International Works_hop on Lan-

copy library functions and supporting extensions to GAS- guages and Compilers for Paraliel Computing (LCPC)

. October 2005.
Net, v1.0. Technical Report LBNL-56495, Lawrence . Car .
Berkeley National Laboratory, October 2004. [20] L. Diaz, M. Valero-Gara, and A. Gonalez. A method

. . for exploiting communication/computation overlap in hy-
9] D. Bonachea and J. C. Duell. Problems with using MPI :
. 1.1 and 2.0 as compilation targets. 2nd Workshopgon percubesParallel Computing24(2):221-245, 1998,

Hardware/Software Support for High Performance Scien- [21] P. Dm:(trtle, L. IP.bI\Nang, I}NI. Matt?aeus, R. IZhang?, gnd
tific and Engineering Computing (SHPSEC-03)03. D.Seckel. Scalable parallel FFT for _spectra simulations

[10] F.Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Pro- on a beowulf clusterParallel Computing 27(14):1921—

e o Vo ' ‘ ' 1936, 2001.
ductivity Analysis of the UPC Language. IRDPS 2004. . . .

[11] S. Chal);sani);md P Ramanathag. Pgarallel FET on ATM-[22] Dolphin Interconnect SolutionsSISCI API User Guide,
based networks of workstations. HPDC '97: Proceed- vi. QI 20é)1 http: //V;WW dolphinics.com f d
ings of the 6th International Symposium on High Per- 23] T. El-Ghazawi and F. Cantonnet. UPC performance an
formance Distributed Computing (HPDC ’97page 2 potential: A NPB experimental study. Bupercomput-

Washington, DC, USA, 1997. IEEE Computer Society. |ng2002 (SC2002November 2.002' . . f
[12] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu,[24] A. Faraj and X. Yuan. Automatic generation and tuning o

15

http://www.sgi.com/products/servers/altix/
http://www.sgi.com/products/servers/altix/
http://upc.lbl.gov
http://upc.lbl.gov
http://www.dolphinics.com

[25]

[26]
[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

MPI collective communication routines. I€S '05: Pro-
ceedings of the 19th annual international conference on
Supercomputingpages 393-402, New York, NY, USA,
2005. ACM Press.

M. Frigo and S. G. Johnson. The design and implementa-
tion of FFTW3.Proceedings of the IEE®3(2):216-231,
2005. special issue on "Program Generation, Optimiza-
tion, and Platform Adaptation”.

GASNet home page. http://gasnet.cs.
berkeley.edu/

D. Han and T. Jones. Survey of MPI call usage.Shi-
Comp 2004.

Hewlett-Packard Company.HP UPC Version 2.0 for
Trué4 UNIX http://h30097.www3.hp.com/

upc/ .

P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Lib-
lit, G. Pike, and K. Yelick. Titanium language reference
manual. Tech Report UCB/CSD-01-1163, U.C. Berkeley,
November 2001.

[40]
[41]

[42]

[43]

[44]

[45]

C. lancu, P. Husbands, and W. Chen. Message strip min{46]

ing heuristics for high speed networks. Pmoc. 6th In-
ternational Meeting on High Performance Computing for
Computational Science (VECPARDO4.

Infiniband trade association home pagép://www.
infinibandta.org

Intrepid Technology, IncGCC/UPC Compiler http:
[lwww.intrepid.com/upc/

LAPI programming guide. Technical Report IBM Tech-
nical report SA22-7936-00, IBM Corporation, 2003.

J. Liu, A. Vishnu, and D. K. Panda. Building multirail In-
finiband clusters: MPI-level design and performance eval-
uation. InSuperComputing?2004.

J. Liu, J. Wu, S. Kini, P. Wyckoff, and D. Panda. High
performance RDMA-based MPI implementation over In-
finiband, 2003.

J. Liu, J. Wu, and D. K. Panda. High performance
RDMA-based mpi implementation over Infinibanbht'l
Journal of Parallel Programming2004.

Mellanox Technologies Inc. Mellanox IB-Verbs API
(VAPI), 2001. http://www.mellanox.com

MPI Forum. MPI-2: a message-passing interface stan-
dard. International Journal of High Performance Com-
puting Applications 12:1-299, 1998. http://www.
mpi-forum.org/docs/mpi-20.ps

MPI Forum. MPI: A message-passing interface stan-
dard, v1.1. Technical report, University of Ten-

16

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

nessee, Knoxville, June 12, 1995.http://www.
mpi-forum.org/docs/mpi-11.ps .

MuPC portable UPC runtime systemhttp://www.
upc.mtu.edu/

Myricom. The GM Message Passing Systelfyricom,
Inc, GM v1.5 edition, July 2002.

J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array li-
braries and compiler run-time systems. Rroc. RTSPP
IPPS/SDP’991999.

R. Numrich and J. Reid. Co-array fortran for parallel pro-
gramming. INACM Fortran Forum 17, 2, 1-311998.

L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier.
Scientific computations on modern parallel vector sys-
tems. InSupercomputing '04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing (CDROM)
New York, NY, USA, 2004. ACM Press.

Open64 compiler tools. http://open64.
sourceforge.net

Quadrics Supercomputinglan Programmer’s Manual
Man page collections: Shared memory access (SHMEM).
CrayDoc Manual S-2383-22.

P. N. Swartztrauber and S. W. Hammond. A comparison
of optimal FFTs on torus and hypercube multicomputers.
Parallel Computing27(6):847—-859, 2001.

Titanium home page. http://titanium.cs.
berkeley.edu

UPC Community ForumUPC specification v1.1,2003.
http://upc.gwu.edu/documentation.html

UPC Community ForumUPC specification v1 22005
http://upc.gwu.edu/documentation.html

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatl-
cally tuned collective communications. 8C’00: High
Performance Networking and Computjnoages 46—46,
2000.

V. Velusamy, C. Rao, S. Chakravarthi, J. Neelamegam,
W. Chen, S. Verma, and A. Skjellum. Programming
the Infiniband network architecture for high performance
message passing systemsI$&CA 2003.

W.Chen, C. lancu, and K. Yelick. Communication Op-
timizations for Fine-Grained UPC Applications. Sub-
mitted 2005.

X. Yuan, R. Melhem, and R. Gupta. Algorithms for sup-
porting compiled communicationEEE Transactions On
Parallel and Distributed System$4(2), 2003.

http://gasnet.cs.berkeley.edu/
http://gasnet.cs.berkeley.edu/
http://h30097.www3.hp.com/upc/
http://h30097.www3.hp.com/upc/
http://www.infinibandta.org
http://www.infinibandta.org
http://www.intrepid.com/upc/
http://www.intrepid.com/upc/
http://www.mellanox.com
http://www.mpi-forum.org/docs/mpi-20.ps
http://www.mpi-forum.org/docs/mpi-20.ps
http://www.mpi-forum.org/docs/mpi-11.ps
http://www.mpi-forum.org/docs/mpi-11.ps
http://www.upc.mtu.edu/
http://www.upc.mtu.edu/
http://open64.sourceforge.net
http://open64.sourceforge.net
http://titanium.cs.berkeley.edu
http://titanium.cs.berkeley.edu
http://upc.gwu.edu/documentation.html
http://upc.gwu.edu/documentation.html

Appendix: Platforms used in measurement

System Processor Network Software Location
Opteron/ Dual 2.2 GHz Opteron Mellanox Cougar Infini-| Linux 2.6.5, Mellanox VAPI,| NERSC Jacquard
InfiniBand (320 nodes 4GB/node) | Band 4x HCA MVAPICH 0.9.4, Pathscale

CCIF772.2
Alpha/ Quad 1 GHz Alpha 21264 Quadrics QsNetl Elan8 Tru64 v5.1, Elan3 libelan 1.4.20, PSC Lemieux
Elan3 (750 nodes 4GB/node) | w/dual rail (one rail used) Compag C V6.5-303, HP Fortran

Compiler X5.5A-4085-48E1K
[tanium2/ Quad 1.4 Ghz Itanium2 Quadrics QsNet2 Elan4 | Linux 2.4.21-chaos, Elan4 lit LLNL Thunder
Elan4 (1024 nodes 8GB/node) belan 1.8.15, MPI 1.24.45, Intel

ifort 8.1.025, icc 8.1.029
x86/ Dual 3.0 Ghz Pen{ Myricom Myrinet 2000| Linux 2.6.13, GM 2.0.19, Inq UC Berkeley Mille-
Myrinet tium 4 Xeon (64 nodes M3S-PCl64B tel ifort 8.1-20050207Z, icc 8.1+ nium

3GB/node) 200502072z

G5/ Dual 2.3 Ghz G5 (1100 Mellanox Cougar Infini-| Apple Darwin 7.8.0, Mellanox Virginia Tech Sys-
InfiniBand nodes 4GB/node) Band 4x HCA InfiniBand OSX Driver v1.04, temX

IBM XLC/XLF 6.0

All platforms used Berkeley UPC v2. 8]} with the appropriate GASNet v1.5] native conduit.

17

	1 Introduction
	2 Partitioned Global Address Space Languages and UPC
	3 GASNet Communications Subsystem
	4 Performance Advantages of One-Sided Communication in Microbenchmarks
	4.1 Latency Advantages of One-Sided Communication
	4.2 Flood Bandwidth Advantages of One-Sided Communication

	5 Optimizing Bandwidth-Limited Applications
	5.1 NAS FT Benchmark
	5.2 Expressing NAS FT with One-sided Communication in UPC
	5.3 Optimizing NAS FT on Modern Networks

	6 Results
	6.1 UPC Non-blocking Slabs and Pencil Results
	6.2 UPC and MPI Comparative Results for Overlap

	7 Related Work
	8 Conclusions

