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Abstract

Partitioned Global Address Space languages like Unified Parallel C (UPC) are typically valued for their
expressiveness, especially for computations with fine-grained random accesses. In this paper we show that
the one-sided communication model used in these languages also has a significant performance advantage for
bandwidth-limited applications. We demonstrate this benefit through communication microbenchmarks and
a case-study that compares UPC and MPI implementations of the NAS Fourier Transform (FT) benchmark.
Our optimizations rely on aggressively overlapping communication with computation but spreading commu-
nication events throughout the course of the local computation. This alleviates the potential communication
bottleneck that occurs when the communication is packed into a single phase (e.g., the large all-to-all in a
multidimensional FFT). Even though the new algorithms require more messages for the same total volume
of data, the resulting overlap leads to speedups of over1.75× and 1.9× for the two-sided and one-sided
implementations, respectively, when compared to the default NAS Fortran/MPI release. Our best one-sided
implementations show an average improvement of15% over our best two-sided implementations. We attribute
this difference to the lower software overhead of one-sided communication, which is partly fundamental to
the semantic difference between one-sided and two-sided communication. Our UPC results use the Berkeley
UPC compiler with the GASNet communication system, and demonstrate the portability and scalability of that
language and implementation, with performance approaching 0.5 TFlop/s on the FT benchmark running on
512 processors.

1 Introduction

The one-sided communication model is typically viewed as advantageous for unstructured computations
and irregular communication patterns in terms of performance and programmability [10]. One-sided com-
munication is the primary mode of communication in Partitioned Global Address Space (PGAS) languages
and has been integrated into the second revision of the Message-Passing Interface (MPI). Although these two
one-sided models differ semantically and operationally in the mechanisms used to enforce synchronization,
they all aim to improve performance by decoupling synchronization from data movement. While the bene-
fits of the one-sided model are most pronounced for small message data transfers where the synchronization
and software overhead is not amortized by transfer time, we argue that one-sided communication can also
be beneficial in improving the performance of applications that are bandwidth-bound. In particular, we show

1



that replacing large bulk transfers with more frequent smaller messages allows UPC’s implementation of the
one-sided model to outperform an MPI two-sided implementation on bandwidth-bound operations.

Conventional wisdom holds that communication costs in applications can be minimized by sending a small
number of large messages, especially for cluster networks where the per-message cost can be high. This prac-
tice is based on the observation that large messages have traditionally been needed to run at performance near
the peak bandwidth. Many applications therefore adopt a bulk-synchronous communication paradigm, divid-
ing program execution into clearly separated global phases of computation and communication. Two recent
trends are challenging that wisdom: network vendors are increasingly offloading communication protocol pro-
cessing onto network hardware; and the emergence of one-sided communication offers unique opportunities
to further reduce overhead by decoupling synchronization from data transfer. In some applications the compu-
tational data dependencies could actually permit a large fraction of the communication to be initiated earlier
or completed later. If one can find sufficient independent computation to overlap the communication latency
such that negligible time is spent waiting for communication completion, then the primary cost of communica-
tion becomes the software overhead required to initiate and synchronize non-blocking communication. Once
the latency component of communication has been entirely overlapped in this manner, the transfer bandwidth
achieved by an individual message becomes less important, making it feasible to trade off smaller message
size for improved overlap.

This paper explores the hypothesis that communication can be effectively overlapped in bandwidth-sensitive
applications using one-sided communication. We use a series of communication microbenchmarks and the
NAS Fourier Transform (FT) Parallel Benchmark as a case study to compare one-sided and two-sided com-
munication models in order to validate this hypothesis. Our approach is to spread the communication of the
transpose step (i.e., the all-to-all) required by the 3D FFT throughout the computation of the local slabs and
send the data as soon as it is ready. This optimization alleviates bottlenecks in the communication and aggres-
sively overlaps the communication behind the computation. Although the total volume of data communicated
is consistent across all the algorithms considered, the number of messages per thread increases fromO(T ) in
the all-to-all based implementation toO(n) whereT is the total number of threads andn is the size of the
maximum dimension. The promising results motivate an even more aggressive overlap strategy that sends
O(n2

T
) messages while still keeping the total volume of data constant. As the results will show, the two-sided

implementations that used theO(n) algorithm achieve nontrivial gains (over1.75×) compared to the tradi-
tional all-to-all based implementation. However the versions which utilize one-sided communication achieve
an additional speedup using the algorithm that sendsO(n2

T
) messages. These algorithms are consistently the

best performers with speedups of up to1.9× over the traditional all-to-all based implementations. We also
implement theO(n2

T
) version in MPI, but show they cannot achieve the same performance benefits as UPC

due to the higher communication overhead. We argue that this added overhead is, at least in part, fundamental
to the two-sided model.

We use Berkeley UPC [6] and MPI v1.1 [39] as representatives of the one and two-sided communication
models, respectively. Although the MPI 2.0 standard [38] adds a one-sided communication interface, this
interface has several semantic limitations that hinder its use in practice [9], and therefore we do not consider
it further in this paper. Instead, we use use the Berkeley UPC implementation with GASNet [7] as our repre-
sentative for one-sided communication. UPC [50], along with Co-Array Fortran [43] and Titanium [29], are
modern examples of the Partitioned Global Address Space (PGAS) language approach to parallel computing.
They expose language semantics that induce a one-sided communication model: processors logically issue
direct loads and stores to the memory of remote processors using reads and writes to logically shared vari-
ables. GASNet is a portable, high performance communication compilation target that exposes a rich set of
initiation and completion mechanisms for one-sided operations that enables the client (typically library and
compiler writers) to compose flexible communication patterns and retain control over their synchronization.
Our one-sided implementations of the benchmark are written from scratch in UPC, and leverage some minor
library extensions to UPC for non-blocking bulk memory operations provided by the Berkeley UPC compiler.
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Our two-sided versions are written in Fortran and C with MPI v1.1, starting with the standard NAS release of
the FT benchmark.

The remainder of this paper is organized as follows: In Section2 we give a brief introduction to PGAS
languages and UPC. Sections3 and4 present the GASNet communications layer and show its bandwidth and
latency performance compared to MPI. Section5 goes into detail about how we leverage one-sided communi-
cation to obtain significant performance improvements over MPI in the NAS FT.

2 Partitioned Global Address Space Languages and UPC

Partitioned Global Address Space languages combine a Single Program Multiple Data (SPMD) program-
ming model with a global address space, which is logically partitioned to give each thread a portion of shared
memory to which it has affinity. The study in this paper is based on Unified Parallel C (UPC), although the ob-
servations on communication techniques are more broadly applicable to the entire family of PGAS languages
and other parallel systems providing one-sided communication. In UPC’s SPMD model, a fixed number of
threads are created at program startup, and every thread runs the same program. Each thread has both a space
for private local memory and some partition of the shared space to which it hasaffinity. A private object may
only be accessed by its corresponding thread, whereas all threads can read or write any object in the shared
address space. The partitioning of the shared space into regions with logical affinity to threads allows pro-
grammers to explicitly control data layout, which is then used by the runtime system to map threads and their
associated data to processors: on a distributed memory machine, the local memory of a processor holds both
the thread’s private data and the shared data with affinity to that thread.

There are many commercial and open-source compilers available for UPC [6, 16, 28, 32, 40]. In this paper
we used the portable, high-performance Berkeley UPC compiler [6], which translates UPC to ISO-compliant
C using a compiler based on the Open64 infrastructure [45]. The translator performs both serial and parallel
optimizations [13, 30, 54], although in this paper we will work with applications that are carefully hand-tuned
and therefore do not take much advantage of the high-level optimizations. On a shared memory machine,
accesses to the UPC shared address space translate into conventional load/store instructions. On distributed
memory machines, which are of interest in this paper, such accesses translate into calls to the Berkeley GASNet
layer [7]. Some of the application-level optimizations presented in this paper make use of Berkeley-specific
extensions to the UPC language [8] and although these extensions are not part of the current UPC language
specification, the results in this paper demonstrate their benefits and motivates their likely inclusion in the next
language revision.

3 GASNet Communications Subsystem

GASNet provides a portable, language-independent communication interface designed as a compilation
target for PGAS languages. GASNet delivers communication performance very close to the raw hardware
peak across many interconnects, effectively leveraging platform and network-specific features such as RDMA
support and block transfer engines.

Figure 1 illustrates the basic abstraction stack of the Berkeley UPC, GCC/UPC+UPCR [32] and Tita-
nium [49] compilers over GASNet.

The GASNet API provides point-to-point data transfers that are fully one-sided and decoupled from inter-
thread synchronization, with no relative ordering constraints between outstanding operations (in contrast to
other one-sided communication interfaces such as ARMCI [42]). GASNet’s point-to-point communication
API includes simple blocking gets/puts, and several flavors of non-blocking data transfers with a flexible and
expressive set of synchronization primitives crafted to support sophisticated communication optimizations.
The GASNet implementation is designed in layers for portability: a small set of core functions constitute the
basis for portability, and there is a reference implementation of the complete API written entirely in terms of
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this core. In addition, the implementation for a given network (theconduit) can be tuned by implementing
any appropriate subset of the general functionality directly upon the hardware-specific primitives, bypass-
ing the core-based reference implementation. Our research has shown that the layered design approach is
effective at providing robust portability as well as high-performance, with UPC performance comparable to
vendor-provided compilers on architectures ranging from loosely-coupled clusters with a near-commodity
network [12] to tightly-coupled MPP systems with a hardware-supported global memory system [5].

Network Hardware

Compiler−specific runtime system

Compiler−generated code

GASNet Core API
GASNet Extended API

Figure 1. GASNet Communications System: the

narrow, AM-based Core API implements the entire

system but can be bypassed by the Extended API

to exploit native hardware features

The GASNet interface has been natively implemented
on Myrinet (GM) [41] , Quadrics QsNetI/QsNetII
(Elan3/4) [46], InfiniBand (Mellanox VAPI) [31, 37], IBM
SP Colony/Federation (LAPI) [33] , Dolphin (SISCI) [22],
Cray X1 (shmem) [47] and SGI Altix (shmem) [1]. Aside
from these high-performance instantiations of the GASNet
interface, there are also fully portable GASNet conduits over
MPI 1.1 (for any MPI-enabled HPC system not natively sup-
ported), GASNet on UDP (for any TCP/IP network, eg. Eth-
ernet), and GASNet for shared-memory SMP’s lacking in-
terconnect hardware. Our GASNet implementation is writ-
ten in standard C and is very portable across architectures
and operating systems – thus far it has been successfully
used on over fifteen different CPU architectures, twelve dif-
ferent operating systems, and twelve different C compilers,
and porting existing GASNet conduits to new UNIX-like
systems is nearly effortless. See [26] for further implementation details.

4 Performance Advantages of One-Sided Communication in Microbenchmarks

Partitioned Global Address Space languages are sometimes considered suitable only for shared memory
hardware such as Symmetric Multiprocessors (SMPs), Distributed Shared Memory machines (e.g., the SGI
Altix [ 1]), or machines with global address space support integrated into the processor (e.g., the Cray X1 [17]).
However in this paper we demonstrate that the one-sided communication model underlying these languages
is also a more effective match to modern cluster network hardware than two-sided message passing interfaces
such as MPI.

The disadvantages of the MPI two-sided message-passing model are summarized in the following three
points:

• Messages sends and receives must be matched to complete a transfer. The implementation is responsible
for matching the MPI communicator, message tag and sender id between the sender and receiver, and
the overhead of this matching can impose a significant performance penalty for small and medium sized
messages.

• MPI guarantees point-to-point message ordering, despite the fact that many current and future HPC net-
works lack point-to-point ordering guarantees in hardware. Other studies [34, 35, 53] have shown there
can be a non-trivial cost associated with enforcing ordering semantics upon fundamentally unordered
network hardware.

• The semantic requirement for active participation from application-level code on both sides of the com-
munication implies that observed latency in an MPI application may be significantly longer than pre-
dicted by a best case scenario - i.e., an application that is inattentive to the network may perform poorly
even on a system with low best-case MPI latency.
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High-quality MPI implementations on cluster hardware generally use a combination of algorithms to pro-
vide the required message-matching semantics and also provide good performance over a large range of mes-
sage sizes. Theeageralgorithm (which is generally used for small messages) optimistically sends the data and
messaging metadata to an anonymous buffer on the target process, which later performs message matching
and copies the data to the user buffer. This approach minimizes the wire-time latency, but imposes CPU and
memory bus overheads for the extraneous data copy operation and hence is unsuitable for sufficiently large
messages where the copy costs would dominate. Therendezvousalgorithm (generally used for larger mes-
sages) initially sends only the metadata to the remote process, which performs the matching and later initiates
a zero-copy transfer of the data. This approach minimizes data copying overheads, but imposes the latency of
at least one additional roundtrip on the wire, and hence is unsuitable for small messages.

A key advantage to the one-sided communication model is that no such tradeoff is required, because the
initiator always provides complete information describing the data transfer to be performed. There are no
overheads imposed by matching or synchronization semantics, and the implementation is free to perform the
data transfer using the most efficient mechanism available. On modern cluster networks, this usually translates
to the use of Remote Direct Memory Access (RDMA) hardware support, which allows efficient remote access
without intervention by the remote host CPU.

4.1 Latency Advantages of One-Sided Communication

lemieux-elan thunder-elan fsn-gm sysx-new jacquard-vapi
lemieux-elan -
GASNet max

lemieux-elan -
GASNet putnb

lemieux-elan -
MPI thunder-elan - GASNet max

thunder-elan -
GASNet putnb

thunder-elan -
MPI

fsn-gm - 
GASNet max

fsn-gm - GASNet
putnb

fsn-gm - 
MPI

sysx-new -
GASNet max

sysx-new -
GASNet putnb sysx-new - MPI

jacquard-vapi - 
GASNet max

jacquard-vapi - 
GASNet putnb

jacquard-
vapi - MPI

16 7.914 7.041 0.337 8.635 3.770 7.603 1.375 1.371 1.421 4.578 4.575 0.051 6.165 6.165 1.881
32 15.837 14.031 0.838 17.539 7.304 15.198 2.789 2.788 2.811 9.203 9.024 0.102 12.360 12.360 3.760
64 31.756 27.115 1.838 34.937 14.811 13.468 5.411 5.411 5.503 18.101 17.454 0.203 24.711 24.711 7.524

128 53.213 39.150 3.623 68.888 28.541 32.474 11.070 11.070 11.046 30.193 28.886 9.605 49.381 49.381 14.815
256 95.704 74.890 5.869 138.089 57.499 79.576 21.965 21.965 21.759 60.626 60.626 19.237 98.762 98.762 30.237
512 127.889 111.837 22.936 273.241 119.384 153.258 43.562 43.476 42.485 120.922 120.444 38.354 198.650 198.650 60.386

1024 173.242 154.227 108.697 533.932 228.062 280.380 83.182 83.182 80.105 240.473 239.002 76.154 401.712 401.712 122.344
2048 209.518 194.438 141.845 762.939 461.732 507.965 149.516 149.516 149.321 475.908 475.329 146.306 613.419 613.419 250.941
4096 230.948 221.192 176.992 814.651 743.906 494.901 222.616 222.616 152.332 678.522 676.758 251.544 713.731 712.949 401.787
8192 244.806 239.735 200.002 830.852 793.308 291.446 227.260 225.808 190.122 735.987 735.917 382.248 754.685 754.685 520.611

16384 251.153 247.957 216.510 844.686 825.497 476.357 227.233 227.203 202.488 758.790 758.385 509.036 780.158 780.041 581.240
32768 255.073 253.437 245.777 851.475 841.298 825.846 227.932 227.932 189.724 778.448 777.673 615.176 790.299 790.259 609.339
65536 254.854 253.778 250.687 855.028 850.271 837.521 228.254 228.179 203.609 788.246 788.196 670.298 795.439 795.418 626.783

131072 255.585 254.788 244.230 857.145 854.660 847.274 228.730 228.709 215.256 793.580 793.550 697.068 798.044 798.034 634.832
262144 255.536 254.811 249.101 858.183 856.522 850.355 228.772 228.772 221.430 796.125 795.991 710.969 799.279 799.263 637.678
524288 255.888 255.085 246.096 858.553 857.326 850.873 228.806 228.784 224.624 796.121 796.121 671.142 799.361 799.361 585.897

1048576 255.922 254.590 241.323 857.963 857.690 851.850 228.816 228.807 225.212 796.140 796.114 668.383 799.394 799.385 570.813
2097152 255.654 254.815 244.093 857.932 857.897 849.808 228.805 228.805 225.564 795.675 795.629 611.797 799.274 799.274 569.435

524288Alpha/Elan3 Itanium2/Elan4 x86/Myrinet Power5/InfiniBand Opteron/InfiniBand
GASNet 255.8879824 858.5533379 228.8056211 796.1212969 799.3605117
MPI 246.0961396 850.8726553 224.624002 671.1423809 585.8971514

2048 Alpha/Elan3 Itanium2/Elan4 x86/Myrinet Power5/Infiniband Opteron/Infiniband
GASNet 209.5178076 762.9394531 149.5158076 475.9076514 613.4186563
MPI 141.8453232 507.9648896 149.3214834 146.3058818 250.9411299

4096 Alpha/Elan3 Itanium2/Elan4 x86/Myrinet Power5/Infiniband Opteron/InfiniBand
GASNet 230.9477354 814.6506777 222.6164014 678.5217998 713.731043
MPI 176.9920527 494.9005449 152.3320205 251.543876 401.7866328

300 900 250 900 900 MIN(link, bus)
4096 GASNet 76.98% 90.52% 89.05% 75.39% 79.30%

MPI 59.00% 54.99% 60.93% 27.95% 44.64%
GASNet 76.98 90.52 89.05 75.39 79.30
MPI 59.00 54.99 60.93 27.95 44.64

524288GASNet 85.30% 95.39% 91.52% 88.46% 88.82%
MPI 82.03% 94.54% 89.85% 74.57% 65.10%
GASNet 85.30 95.39 91.52 88.46 88.82
MPI 82.03 94.54 89.85 74.57 65.10
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Figure 2. Latency of GASNet vs. MPI on Quadrics Elan4

One of the key advantages of a one-sided commu-
nication model is that all relevant information about
a communication operation is provided by the initia-
tor – information is never required from the remote
user code to complete message delivery. GASNet’s
one-sided data transfer operations are completely
decoupled from inter-process synchronization, en-
abling data transmission to often begin immediately
upon operation initiation (subject only to network
congestion) and proceed autonomously from any ac-
tion at the target process. For example, in a remote
put operation the initiator can always transmit the
remote destination address along with the data, pro-
viding a close semantic match to the requirements of
high-bandwidth, zero-copy RDMA hardware. Con-
versely, a similar operation in MPI message-passing
requires somehow retrieving the destination address from a matching receive operation posted by the target
user process (possibly at some point in the future) before the transfer can be completed. This matching op-
eration often dictates the performance of MPI implementations, and vendors consequently invest significant
effort in optimizing its cost.

The FT application is a bandwidth-limited problem, however the effective use of overlap in our imple-
mentations depends crucially on the per-message CPU overheads associated with initiating and completing
non-blocking operations. These overheads can be difficult to measure directly, however comparisons of small-
message latency performance on a given network can provide insight into the effects of software overhead,
because it tends to comprise a large fraction of small-message latency. In network processor-based solu-
tions such as Quadrics QsNetI/II, the network interface is capable of autonomously completing MPI message
matching operations. Such approaches generally outperform host-based solutions that require attention from
the remote host CPU (e.g., Myrinet and InfiniBand). We expect other networks to follow the lead of Quadrics
in this type of MPI protocol offload, and therefore consider the Quadrics network in this section for our latency
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analysis, since it provides the best-case for MPI message-passing latency.
Figure2compares theround-trip latency performance over varying data transfer size of GASNet’s Quadrics/Elan

conduit with Quadrics MPI on an Itanium2/Elan4 system. The GASNet tests measure the round-trip latency to
issue a GASNet put or get operation and block for round-trip completion. The MPI tests measure the round-trip
latency for a ping-pong test where the initiator sends a message of the given size, and the remote side issues a 0-
byte acknowledgement message. Performance is measured using both the blocking (MPI Send/MPI Recv )
and non-blocking (MPI Isend/MPI Irecv ) MPI message passing primitives.

The Quadrics network hardware provides support for offloading MPI message matching overheads onto
the NIC processor via the Elan Tports interface, freeing the host processor from most duties associated with
the MPI message queue. However as evidenced by the figure, there is still a pronounced latency difference
between this interface and the performance achievable through the lighter-weight, raw RDMA elan interfaces
(elan put/elan get ) targeted by the GASNet put/get implementation on Quadrics. One-sided communi-
cation is a better semantic match to RDMA-enabled hardware, and thus induces lower software overhead and
delivers better latency performance for small and medium-sided messages.

4.2 Flood Bandwidth Advantages of One-Sided Communication

# mpiperf-F mpiperf-P osu-nb osu-b testosumpi_bw mpi blocking nb ratio put-nbi put get-nbi get put-ratio get-ratio put-nbi get-nbi
1 185.029 101.125 280.9498 369.451 0.274365 0.360792
2 369.672 202.241 563.2154 737.2452 0.550015 0.719966
4 740.367 406.19 1128.413 1476.668 1.101966 1.442059
8 1481.015 812.144 2253.166 2979.205 2.200357 2.90938

16 2963.321 1622.685 4518.14 5869.922 4.412246 5.732346 4.851401 9126.75 1881.261 4034.236 1370.061 2.020024 0.892898 8.912844 1.837169
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Figure 3. Bandwidth of GASNet vs. MPI on InfiniBand

Figure 3 compares the flood bandwidth per-
formance over varying message size of GAS-
Net’s InfiniBand/VAPI conduit with OSU MVA-
PICH [36], an extensively tuned implementation
which is widely considered to be the best avail-
able MPI on InfiniBand. GASNet consistently and
significantly outperforms MVAPICH on InfiniBand
because the GASNet one-sided put/get semantics
are fundamentally a better match for the capabili-
ties of the underlying RDMA hardware than MPI’s
two-sided message passing semantics. GASNet’s
put/gets turn into simple, fully one-sided RDMA op-
erations in the common case, and therefore reap the
hardware peak performance, whereas MPI pays in
performance for enforcing MPI’s ordering and mes-
sage matching semantics. GASNet’s good perfor-
mance on pinning-based RDMA network hardware
such as InfiniBand and Myrinet can also be attributed to Firehose [4], our novel distributed algorithm for
efficiently managing memory registration on these networks. Firehose effectively delegates the control of
registration resources to the RDMA initiators, successfully exposing one-sided, zero-copy communication
as a common case, while minimizing the number of host-level synchronizations required to support remote
memory operations and amortizing the cost of synchronization and pinning over multiple remote memory
operations. Another notable feature of the InfiniBand flood bandwidth is the performance drop-off beyond
256KB data transfer size - this artifact is due to a performance bug in the Mellanox hardware, which the
GASNet/VAPI conduit has been tuned to avoid.

This semantically-induced bandwidth performance gap between MPI’s message passing and GASNet’s
one-sided communication is observable across a number of modern RDMA-enabled cluster interconnects.
Figure4 compares the flood bandwidth achievable with GASNet’s one-sided put/get RMA primitives against
MPI Isend/MPI Irecv message-passing for a 4KB and 512KB data transfer size across a number of pro-
duction cluster supercomputers (as detailed in the appendix). The bar height is normalized to the theoretical
peak bandwidth of the system (a minimum of the interconnect link speed and the I/O bus speed), and absolute
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Figure 4. Flood Bandwidth of GASNet vs. MPI for 4KB and 512KB Messages

bandwidth performance is also shown. The figure demonstrates that for “large” messages, both one-sided and
message-passing communication mechanisms typically saturate to similar peak bandwidth values (the only
exception being due to the InfiniBand hardware performance bug described in the previous section). However,
one-sided communication consistently provides a significant performance advantage at “mid-ranged” sizes of
about 1KB - 100KB, where the raw payload transmission times are often too short to fully amortize or overlap
the MPI message matching overheads. Similar patterns have been observed on other systems for such “mid-
ranged” message sizes. Recent studies [27] of MPI usage across a range of real-world scientific applications
have found that “mid-ranged” message sizes dominate many production applications and become even more
prevalent at larger scales, motivating the importance of this range of message sizes. As described in subsequent
sections, these message sizes are also often crucial in achieving efficient communication overlap.

5 Optimizing Bandwidth-Limited Applications

In this section we consider a problem that is often hailed as the canonical example of a problem limited by
bisection bandwidth, the 3D FFT. Superficially, none of the latency advantages of a one-sided model would
appear to be relevant, because the key to performance is the efficiency of a cross-processor transpose that
happens between phases of the FFT. As typically coded, the messages are all large and have a fixed size
that is known in advance, since it is a simple function of the problem size. The FFT kernel is used in many
scientific applications and is a critical operation in its own right, but it also reflects a more general class of
algorithms that are a challenge to scalability and performance. Machines with inadequate bisection bandwidth
typically suffer relative to those with full crossbars on applications requiring a large volume of many-to-many
or all-to-all communication [44].

5.1 NAS FT Benchmark

The NAS FT benchmark [2] implements a partial differential equation using a series of repeated forward
and inverse Fourier Transforms over three dimensions. Since all dimensions are represented linearly in mem-
ory, the sets of 1-D FFTs must be transposed in memory in order to calculate the complete 3-D FFT, which
translates into three sets of 1-D FFTs followed by transpositions. The data can be decomposed across parallel
threads either in planes along one of the dimensions (1-D layout) or in two dimensional slices (2-D layout)
when the number of threads exceeds the number of planes. As implemented in the original NAS Benchmark,
two of the dimensions are computed and transposed locally while the remaining single dimension incurs a
global exchange among all processors, after which the remaining FFT dimension can be computed. The ref-
erence implementation of the NAS FT Benchmark is realized in Fortran and the communication uses MPI
message-passing. It has undergone several revisions since its original release and can be considered a mature
benchmark. The only significant communication step in the 1-D layout version of the problem is implemented
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by the MPI All-to-all collective, a bulk communication operation where each thread exchanges its portion of
the 3-D FFT with every other thread. The existing exchange (All-to-all) version of this benchmark separates
communication and computation into distinct phases: after computing the FFT in one dimension over all its
planes, every thread locally transposes the computed data into an ordering suitable for the exchange operation,
after which the data is re-transposed to complete the remaining FFTs. The communication can be placed be-
tween a local 1D-FFT and a local 2D-FFT or vice-versa and while the operation requires a transpose, the local
2D-FFT makes use of a cache-blocked algorithm to compute both the unit and non-unit stride dimensions.

5.2 Expressing NAS FT with One-sided Communication in UPC

If modeled according to the original NAS Fortran/MPI implementation, a straightforward one-sided UPC
implementation could perform the exchange using either point-to-point bulk put operations or alternatively
use the collective operations recently added to the UPC language [51]. Since large exchange operations are
bandwidth-bound and are not noticably optimized beyond the performance of point-to-point communication,
we expect UPC performance to at least match the performance of the original NAS version given the point-to-
point performance results presented in section4. Whereas the data movement and communication pattern are
similar in both the one-sided and two-sided variants of this implementation approach, one-sided communica-
tion only differs in that each communication call provides complete information to the communication library.
Unlike two-sided message-passing where the target thread must provide the target address, one-sided commu-
nication maps well to networks that can autonomously delivery data – the entire communication can proceed
without involving the target processor. However, the size of the individual messages and overall communica-
tion in the exchange is sufficiently large to hide the implied synchronization costs imposed by the two-sided
model.

5.3 Optimizing NAS FT on Modern Networks

Thread 0's planes

Thread 1's planes

Pencil

Slab

Plane

Figure 5. FT data decomposition for a 4x4x4 cube

with 2 threads

Issuing a single collective communication to globally ex-
change all FFT planes makes use of large messages with the
goal of maximizing the available bandwidth and simplifies
the programmer’s task in observing local dependencies: two
of the three FFTs are complete prior to the exchange and
the last FFT can begin once the exchange completes. The
performance downside, however, arises from the increasing
monetary cost and complexity in providing full network bi-
section bandwidth as the amount of nodes involved in the
exchange increases. Networks that do not provide full bi-
section bandwidth at high node counts can benefit from any
operation that can replace or at least amortize the cost of a
global exchange operation. Those that do provide full bi-
section bandwidth at large scale can still reduce the cost of
a global exchange if the communication network supports
asynchronous communication, because portions of the ex-
change communication can be hidden behind computation.
Since our target networks support such operations, our pro-
posed approach is to decompose the FFT computation and communication into smaller pieces that permit
overlap. In doing so, we have employed and implemented the FT benchmark by decomposing the two dimen-
sional planes of the 1-D layout into small and even smaller contiguous pieces. These implementations are
summarized by the following two approaches:
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• Overlap Slabs. Overlapping slabs is a method of decomposing the 3D-FFT to reduce the amount
of time spent in communication-bound operations by overlapping the communication cost of sending
previously computed slabs with the computation of remaining slabs. A slab is defined to be the portion
of each FFT plane that has affinity to a single thread and will be sent to a single remote thread, such
that communication incurs only a single point-to-point operation (see Figure5). In the original NAS
implementation, slabs destined for each remote thread are packed to be made contiguous prior to the
global exchange operation.

• Overlap Pencils. The pencils-based approach is similar to the slabs-based approach, except that it fur-
ther reduces the granularity of communication and overlap, sending more and smaller-sized messages.
Point-to-point messages of a single FFT row are sent while computation happens over the next row.
Figure6 shows the major communication and computation steps in partitioning the 3-D FFT. Since the
cube’s decomposition assigns 2D-planes to each thread, each thread begins by computing the first of its
FFT computations without communication in the non-contiguous dimension. Following a transpose, the
set of contiguous FFTs is computed, and each row is computed as the previously computed row is sent
to the new owning thread. The next owning thread is thread who requires affinity to the row as a result
of transposing the cube for the second (and last) time. A barrier signals the point at which each thread
has finished its row computations, which allows the final FFT dimension to be computed following a
local transpose.
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1D-FFT Columns

1D-FFT 
(Columns)

Tranpose + 
1D-FFT    

(Pencil Rows) 
+ Send Pencil

1D-FFT Pencil = 1 Row

Pencil Send to Thread 0

Last 1D-FFT
(Thread 0’s view)

Transpose + 
1D-FFT

Pencil 1D-FFT

Pencil Send to Thread 0
Pencil 1D-FFT

Pencil Send to Thread 0
Pencil 1D-FFT

Pencil Send to Thread 1
Pencil 1D-FFT

Pencil Send to Thread 1
Pencil 1D-FFT

. . .  

Figure 6. 3D-FFT by communicating overlapping pencils

Table1 summarizes implementation algorithms and provides a measure of overlap efficiency as a ratio of the
data that can be overlapped in one plane over the data that is computed in one plane based on the dimension of
the FFT cube (n3). The single exchange approach used by the default NAS FT implementation is represented
by UPC Exchange. Both overlap algorithms have communication startup costs where the first and last units
of communication, either slabs or pencils, cannot be overlapped with additional computation. Also shown is
the number of total network messages sent by each thread in order to complete the global exchange. As can
be expected, the finer the data decomposition, the greater the message count (up to a factor of the square of
the input cube’s dimensions for the Pencils algorithm). Also, since the volume of the data exchanged remains
constant across all versions of the benchmark, sending more messages also implies that the messages are
smaller.

6 Results

Performance results in this section are shown for three popular RDMA-based interconnect technologies:
InfiniBand, Quadrics/Elan and Myrinet. The FT benchmark is fairly intensive in its floating point requirements
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FT Implementation # Messages per thread Per-plane Overlap Efficiency
UPC Exchange THREADS 0
UPC Overlap Slabs THREADS ∗ n

THREADS 1− 2
n

UPC Overlap Pencils n2

THREADS
1− 2 ∗ THREADS

n2

Table 1. Summary of UPC FT Algorithms as a function of the dimension of the FFT cube ( n3)

and since each system uses different processors, the overall MFlops results that determine the time to solve
a series of 3D FFTs cannot be used as a basis to compare interconnect technologies. Rather, the variety
of interconnect solutions and generations are graphed to demonstrate that the communication optimizations
employed by FT UPC generalize to a large class of high performance system configurations.

In order to measure the effectiveness of our approach over the mentioned RDMA-based networks, we wrote
UPC and MPI-C versions of global exchange, Overlapped Slabs and Overlapped Pencils with the goal of
comparing them to the original NAS Fortran/MPI Benchmark. To prevent performance offsets emanating from
serial FFT performance variance across different languages, all benchmarks use a 1-D FFT decomposition of
the domain and compute the 1-D FFTs using the FFTW package [25] (which consistently outperforms the
Stockholm FFT used in the original NAS Fortran implementation by a small margin on all the platforms we
encountered). The MPI-C and UPC versions of the benchmark are similar except for the language and/or
library features they employ for non-blocking communication. UPC uses GASNet’s non-blocking operations
whereas MPI-C usesMPI Isend combined with preposting of receive buffers well in advance such that no
overheads resulting from unexpected messages are incurred by the underlying MPI communication layer. All
but the original default Fortran with MPI version of the benchmark employ a configurable padding parameter
that allows one of the power-of-two dimensions in the FT class to be padded in order to more effectively
use the memory hierarchy. We have found the padding to be most effective when computing FFT over the
non-unit-stride dimensions.

The MPI wallclock timer is used to profile the MPI implementations, and hardware cycle counters of sub-
microsecond accuracy are used to time the UPC implementations. The data reported is the maximum perfor-
mance across five trials - the standard deviation across the various trials was very low.

6.1 UPC Non-blocking Slabs and Pencil Results

The first set of results in Figure7 show the performance speedup of the UPC implementation of Exchange,
Slabs and Pencils over the original NAS Fortran implementation. Clearly, the approach of overlapping com-
munication and computation over smaller units of the FFT is beneficial on all the tested interconnects and
actually improves over newer generations of the same interconnect (Elan/Quadrics). Average speedups are on
the order of 80%, with the most recent interconnects (InfiniBand and Elan4) showing 90% speedups. These
speedups essentially demonstrate that overlapping slabs and pencils can produce higher overall efficiency on
systems that allow networking and computational resources to be used concurrently and independently.

In comparing UPC Pencils to Slabs, all platforms show Pencils to be slightly faster. While the improvement
is never beyond 10%, Pencils notably differ from Slabs by sending many more messages. This is contrary to
the typical approach of sending fewer larger messages and validates that the GASNet communication library
can effectively maintain or improve communication performance as it decreases the message size and increases
the messaging rate.

In order to measure Pencil’s impact in increasing the messaging rate, we identified two areas within the
benchmark where Slabs and Pencils produced noticable differences across all platforms. The remaining 1-D
FFT that occurs after all rows are communicated requires each received row to be reordered for a non-unit
stride FFT. With Slabs, consecutive elements in the non-unit stride appear on different slabs, whereas Pencils
allow the rows to be sent into an ordering that anticipates the remaining non-unit stride FFT and effectively
reduces the stride to the size of a pencil. On systems such as the Alpha with a small TLB and/or high TLB miss

10



1

1.2

1.4

1.6

1.8

2

2.2

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

S
pe

ed
up

 o
ve

r 
or

ig
in

al
 N

A
S

 F
T

 F
or

tr
an

UPC Exchange

UPC Non−Blocking with Slabs

UPC Non−Blocking with Pencils

Figure 7. Speedup of UPC Exchange, Overlap Pencils and

Overlap Slabs over Original Fortran FT

Myrinet 64 InfiniBand 256 Elan3 256 Elan3 512 Elan4 256 Elan4 512
0

5

10

15

20

25

30

35

40

45

S P

S P

S

P

S
P

S
P

S P

se
co

nd
s

Time for Row Communication
Time for Last 1−D FFT

Figure 8. UPC Slabs (S) and UPC Pencils (P): Communica-

tion overhead and resulting computation performance

penalty, the smaller stride improved computational performance by reducing pressure on the memory system
and minimizing the number of TLB misses. Pencils therefore reduces the amount of time spent computing
the final FFT, although this improvement comes at a cost of a higher total message count. These combined
costs are shown in Figure8 for each platform, which illustrates that the time Pencils recovers in reordering
is greater than the increased overhead of sending more messages. The overheads imposed by the increase
in message rate and the decrease in message size are well amortized by the network through the use of the
GASNet communication library. These overheads include operation initiation and completion costs as well
as the inter-operation gap which represents the minimum amount of time between two consecutive message
injections. These overheads are kept relatively low considering that many more messages are sent in Pencils
compared to Slabs and that these messages are actually much smaller. For example, for FT’s Class D problem
size at 256 processes, each process sends 1024 messages of 128KBytes with Slabs and 8192 messages of
16KBytes with Pencils.

6.2 UPC and MPI Comparative Results for Overlap

In order to evaluate the effectiveness of our overlapping techniques with regards to one and two-sided
communication, we also implemented the overlapped non-blocking Slabs and Pencils approaches for MPI. The
MPI implementations make use of non-blocking sends and prepost receive buffers in a communication phase
before non-blocking communication is initiated to maximize the potential for communication overlap and
minimize the amount of unexpected MPI messages and extra memory copies. Under UPC, all communication
is one-sided – the initiator provides both the source and destination addresses, and the non-blocking operations
return an explicit handle which is later synchronized. Results comparing the UPC and MPI implementations
of these non-blocking techniques are shown in Figure9 in terms of total time each version of the benchmark
spends in communication (all versions are always within 10% of each other for the times spent in computation).
Perfect overlap would be represented as 0 seconds, and any time above 0 seconds represents the combined,
non-overlapped cost of initiating and completing the non-blocking operations.

The Myrinet and Elan4 systems are the only configurations where the MPI implementations remain rela-
tively competitive with those measured on UPC’s FT implementations. The MPI configurations on other plat-
forms either spent unacceptable time dealing with non-blocking communication messages or simply crashed.
Although the MPI implementation of Overlapped Slabs and Pencils is compliant with the MPI 1.1 speci-
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fication, the aggressive use of asynchronous point-to-point communication is not representative of the way
MPI applications are typically written. While preposting buffers is always a good general strategy to prevent
unexpected message costs, preposting and initiating several hundred communication operations on networks
capable of highly asynchronous operation relies on correct and efficient MPI receive queue handling. The MPI
results raise some obvious scalability concerns with regards to the number of point-to-point messages and the
total amount of nodes exchanging messages. For example, for FT’s Class D problem size at 256 processes
using Pencils, each node sends and receives 2K messages for each plane it owns in the 3D cube decomposition
and as such, leads to a sharp increase in the length of the MPI receive queues. Performance problems are
particularly apparent in the Opteron/InfiniBand system, where the MVAPICH implementation has scalability
and correctness problems: the Pencils approach causes the application to crash and the Slabs approach causes
the library to spent all of its time completing asynchronous sends and receives in MPI’sWaitall primitive.
On this same InfiniBand platform, the one-sided UPC benchmark reaches its lowest communication overhead
times for both Slabs and Pencils, indicating that the interconnect technology is certainly capable of producing
significant speedups using either Pencils or Slabs Overlap.

UPC’s overlapped approaches fare best on the more recent interconnect technologies we have benchmarked,
where the commmunication times demonstrate a high messaging rate and low overhead for small-sized mes-
sages. Figure10 presents a summary of the best result we could obtain on each platform for the default NAS
Fortran implementation, the best overall MPI and best overall UPC implementations. All platforms use the
largest FT problem size (Class D) with the exception of Myrinet where the problem size was too large to fit
at 64 processors and on InfiniBand where the MPI implementation’s unreliable handling of the largest class
required the smaller Class C to be used. In all cases, the Best MPI constitutes of the better of either the NAS
Fortran/MPI, Exchange-based MPI/C, Slabs MPI/C or Pencils MPI/C and happens to be Slabs MPI/C each
time. This is not surprising since all the networks are capable of some form of asynchronous operation where
any overlap is better than no overlap. The Best UPC happens to always be the Pencils version when compared
to the Exchange-based and Slabs approaches. In many cases, the overlapped versions of the code nearly double
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the performance of the original NAS FT implementation. While the original NAS FT differs from the other
versions since it is based on Fortran, the other implementations share 90% of the code base with the overlap
variants. In addition, the UPC Slabs and Pencils approaches differ in only about 10 lines of code, indicating
the relative ease of programming for performance using finer-grained overlap in the one-sided communication
model.

GASNet’s low overhead for initiating many non-blocking communication operations allows a performance
advantage through computation/communication overlap, trading latency associated with large bandwidth-
bound operations such as the global exchange for minimal small message initiation and completion costs.
The synchronization and messaging overheads imposed by the two-sided message-passing model are shown
to come at a noticeable cost, and with some MPI implementations seriously limit the effectiveness of our over-
lap optimizations. The one-sided model successfully reduces these overheads and delivers good small message
pipelining message rates which largely determine the overlap efficiency of the benchmark on RDMA-capable
networks.

7 Related Work

As we have shown, large performance improvements are possible by distributing the communication op-
erations throughout an application rather than segmenting the algorithms into a computation phase followed
by a communication phase. This is evidenced by the improvements of our Pencils and Slabs implementations
over the more traditional all-to-all implementations. Analyzing and optimizing the all-to-all communication
pattern needed for a large parallel Fourier transform has been the subject of many papers. The analyses have
ranged from modeling the performance on small commodity clusters [11, 21] through using highly specialized
networks [14, 20, 48].

Many groups have also worked to tune the collectives implementations in network libraries. Automatic
tuning efforts [24, 52] generate a set of good implementations of a collective operation and then choose the
best one based on a search through the implementation space. Network vendors have also spent consider-
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able efforts tuning their communication libraries so that they can leverage hardware-supported collectives [3].
However these methods generally assume that the algorithms are segmented into computation and commu-
nication phases. Thus, these solutions only optimize the communication phases and rely on communication-
communication overlap. Part of our hypothesis is that by analyzing the communication pattern along with the
computation pattern, the communication can be spread through out the computation, relieving communication
bottlenecks that can occur during a communicate-only phase and deliver better overall performance through
overlap.

Analyzing multiple communication calls within applications rather than just the communication itself has
been the topic of many research groups. Yuan et. al [55] describe algorithms for analyzing the communication
requirements of an application and then statically manage the communication metadata using knowledge of the
underlying network. However, their work is mainly targeted at optical networks which have different semantics
about how connections need to be setup than conventional interconnects. Iancu et. al [30] consider the benefits
of breaking large messages into smaller ones to automate overlap, although their message segmentation is done
implicitly by the compiler and therefore subject to the limitations of static analysis. Our implementations are
based on explicit overlap where the programmer directly expresses the lack of data dependencies. Danalis
et. al [18] have described techniques similar to our own to explicitly spread the communication across the
computation to achieve better performance. However their main focus is on applications written for a two-
sided model, which is very similar to our MPI Slabs and MPI Pencils algorithms. Danalis et. al also show the
advantages of using RDMA and communication-computation overlap and show how utilizing a lower level
communication library can result in better performance. The significant difference between our work and
theirs is that we argue that applications written using one-sided semantics can realize even more performance
gains because of the inherent advantages of the one-sided model, as evidenced by the difference between MPI
Pencils and Slabs and UPC Pencils and Slabs. In addition, our work demonstrates the effectiveness of these
techniques on a variety of cluster interconnects and shows that this approach scales to large processor counts
and large problem sizes, further extending and validating their findings.

Finally, previous work on implementing the NAS parallel benchmarks in UPC [23] and Co-Array For-
tran [15] was based on translating the MPI or OpenMP versions. In this work, the UPC implementations were
written from scratch using a one-sided paradigm and thus are able to more effectively leverage the commu-
nication features of UPC/GASNet and demonstrate the capabilities of the system. We’ve applied some of
the ideas from this work to our implementation of NAS FT in Titanium [19] (which also uses GASNet for
communication) and achieved similar speedups over the MPI versions.

8 Conclusions

We have presented a detailed investigation into the relative performance of one-sided and two-sided commu-
nication, using UPC on GASNet for one-sided communication and MPI v1.1 for two-sided message-passing.
Our microbenchmarks demonstrate that GASNet significantly outperforms MPI in latency performance and
small to mid-size message bandwidth. As expected, both models reach the same asymptotic bandwidth at
large message sizes on most platforms, but GASNet reaches the peak for smaller message sizes than MPI.

Our results suggest that one-sided communication offers an opportunity to revisit some commonly shared
beliefs induced by two-sided message passing. Among these, one typical assumption is that performance
is optimized by sending fewer and larger messages to asymptotically approach peak bandwidth on cluster
networks. The one-sided model provides alternative mechanisms whereby small messages can provide lower
startup and completion costs and that the programmer can retain explicit control over synchronization by
separating it from data movement. Applying these techniques to the well-known NAS FT benchmark, we
have shown improvements in two dimensions. First, the low startup and completions costs that determine
the potential for efficient communication and computation overlap have produced almost 2x speedups over
the existing reference NAS FT Fortran implementation. Second, by aggressively pipelining smaller-sized
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messages and not imposing any particular synchronization or ordering constraints over these messages, the
one-sided approach as implemented in Berkeley UPC/GASNet has produced more efficient and consistent
results than the two-sided approach and various MPI implementations. These results are consistent across four
different cluster networks (Myrinet, Infinband, and two generations of Quadrics) and highlight the viability of
UPC as a high performance programming model for clusters.

These results provide evidence that the bulk-synchronous, message-passing style of communication popu-
larized by MPI may not be the most effective use of cluster networking hardware. As the number of processors
grows in future machines, and networks become a more significant component of system cost, optimizations
such as communication and computation overlap, use of small messages to increase the depth of message
pipelines, and reductions in communication overhead through one-sided communication models are likely to
increase in importance.
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Appendix: Platforms used in measurement

System Processor Network Software Location
Opteron/
InfiniBand

Dual 2.2 GHz Opteron
(320 nodes 4GB/node)

Mellanox Cougar Infini-
Band 4x HCA

Linux 2.6.5, Mellanox VAPI,
MVAPICH 0.9.4, Pathscale
CC/F77 2.2

NERSC Jacquard

Alpha/
Elan3

Quad 1 GHz Alpha 21264
(750 nodes 4GB/node)

Quadrics QsNet1 Elan3
w/ dual rail (one rail used)

Tru64 v5.1, Elan3 libelan 1.4.20,
Compaq C V6.5-303, HP Fortran
Compiler X5.5A-4085-48E1K

PSC Lemieux

Itanium2/
Elan4

Quad 1.4 Ghz Itanium2
(1024 nodes 8GB/node)

Quadrics QsNet2 Elan4 Linux 2.4.21-chaos, Elan4 li-
belan 1.8.15, MPI 1.24.45, Intel
ifort 8.1.025, icc 8.1.029

LLNL Thunder

x86/
Myrinet

Dual 3.0 Ghz Pen-
tium 4 Xeon (64 nodes
3GB/node)

Myricom Myrinet 2000
M3S-PCI64B

Linux 2.6.13, GM 2.0.19, In-
tel ifort 8.1-20050207Z, icc 8.1-
20050207Z

UC Berkeley Mille-
nium

G5/
InfiniBand

Dual 2.3 Ghz G5 (1100
nodes 4GB/node)

Mellanox Cougar Infini-
Band 4x HCA

Apple Darwin 7.8.0, Mellanox
InfiniBand OSX Driver v1.04,
IBM XLC/XLF 6.0

Virginia Tech Sys-
temX

All platforms used Berkeley UPC v2.1 [6], with the appropriate GASNet v1.5 [7] native conduit.
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