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1 Introduction

1.1 Abstract

This document outlines a proposal for extending UPC’s point-to-point memcpy library with support for
explicitly non-blocking transfers, and non-contiguous (indexed and strided) transfers. Various portions of
this proposal could stand alone as independent extensions to the UPC library. The designs presented here
are heavily influenced by analogous functionality which exists in other parallel communication systems, such
as MPI, ARMCI, Titanium, and network hardware API’s such as Quadrics elan, Infiniband vapi, IBM LAPI
and Cray X-1.

Each section contains proposed extensions to the libraries in the UPC Language Specification (section 7)
and corresponding extensions to the GASNet communication system API.

1.2 Motivation

The UPC Language specification (version 1.1.1) provides a very minimal library for performing bulk-transfer
communication. The upc memput, upc memget and upc memcpy functions operate analogously to C99’s
memcpy function, and each provide the ability to move a single contiguous block of memory to/from locations
specified by a pointer-to-local and pointer-to-shared or between locations specified by two pointers-to-shared.
No further libraries are provided for directly expressing more complicated non-collective communication
patterns - such as the movement of bulk data to/from non-contiguous locations (eg the column of a multi-
dimensional array, or a set of locations in an irregular data structure). Non-contiguous access interfaces have
historically been used to achieve speedups through communication aggregation - the transformation of fine-
grained access patterns (which could näıvely be implemented using a large number of small messages), into
more coarse-grained communication operations that improve network efficiency by sending larger messages
and performing packing and unpacking at either end (possibly with hardware assistance). Furthermore, no
mechanism is provided for the application programmer to express that a given communication operation
can proceed independently with respect to other surrounding computation or communication operations
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- a data independence property which has traditionally been used to obtain substantial parallel speedups
by hiding communication latency with overlapped computation and other communication. The best an
application programmer can currently do with the UPC 1.1.1 libraries is to express all non-collective bulk
communication operations using a set of blocking contiguous transfers, and pray that very smart optimizers
can transform this näıve access pattern (which has been forced by the restrictive library interface) into
optimized communication operations that provide communication aggregation and overlap.

In an ideal world, UPC compilers could always automatically perform this transformation and achieve the
maximal possible benefit from communication aggregation and overlap. However, the truth is that many
factors force compilers to be overly conservative in such communication transformations and therefore the
resulting communication pattern often falls quite short of the best one could hope to do with full application-
level knowledge. Part of this failure is due to conservatism forced by features of UPC inherited from C (most
notably pointer aliasing and separate compilation), however even assuming a perfect solution to these analysis
problems, other fundamental sources of forced conservatism remain. In a complicated application, many
important behavioral properties of the program are not directly expessed anywhere in the source program
- they exist solely in the programmer’s mind. Furthermore, many of the most useful properties (from an
optimizer-writer’s perspective) are not even possible to infer solely by inspection of the source program, even
given an infinitely smart optimizer - because they depend on constraints such as the set of legal inputs,
that are implicitly part of the program design but are often not expressed anywhere in the program, nor
are they inferable solely from the program text. This is important because many of the most aggressive
optimizations (such as some forms of static communication aggregation) need to make assumptions which
are based on this sort of unexpressed knowledge in order to be safe (because for example, they might be
unsafe in situations where the unexpressed assumptions are violated). Because the application programmer
has this unexpressed algorithmic knowledge in his mind, he’s in a unique position to direct these more
aggressive optimizing transformations (given the proper tools), which even a perfect static compiler could
not do without extra-linguistic help.

The UPC library extensions proposed in this document give the application programmer or library writer the
tools necessary to request and express such beneficial transformations directly while tuning communication
operations occuring in the application’s critical path, rather than being constrained by the library interface
to write communication in a näıve style and therefore being forced to rely upon a mythical perfect optimizer
to automatically apply these important transformations (which we’ve just argued that the compiler often has
insufficient information to legally perform). By allowing the programmer to directly and conveniently express
communication aggregation and overlap in places where the algorithmic data dependencies allow, compiler
implementors can focus their efforts on ensuring the requested communication is performed as efficiently
as possible - for example leveraging available network hardware capabilities for non-blocking transfers and
non-contiguous access.

From the perspective of GASNet as a compilation target, we want to provide interfaces for non-blocking
and non-contiguous accesses to support the implementation of such language-level libraries, and additionally
support automated communication optimizations that the compiler may apply to transform fine-grained
communication patterns into bulk non-blocking and/or non-contiguous operations. Furthermore, we want
the ability to implement and tune each such operation in the way most appropriate for the underlying
network hardware, taking advantage of the wide variety of support for non-contiguous access available on
modern HPC networks.

1.3 Implementation Notes

All of the proposed extensions described in this document have been implementated and are available as a
prototype implementation in the Berkeley UPC compiler, version 2.4.0 (http://upc.lbl.gov). All functions
in the prototype implementation operate exactly as described in this document with the notable exception
that all functions, types and constants named using the prefix bupc instead of upc . This naming convention
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reflects the fact that these extensions are not currently part of the official UPC language specification.

The proposed GASNet extensions are also implemented exactly as described in this document, starting as
a prototype implementation in GASNet 1.4. This documentation will soon be merged into the GASNet 2.0
specification.

2 Explicit-handle non-blocking bulk-contiguous operations

The following functions provide non-blocking, split-phase memory access to shared data. All such non-
blocking operations require an initiation (e.g., a put or get) and a subsequent synchronization on the com-
pletion of that operation before the result is guaranteed. These are “explicit-handle” non-blocking operations
because the initiation function returns an explicit handle value, which must be passed to the synchronization
function for completing the corresponding operation.

2.1 Non-blocking explicit handle type

type upc_handle_t
value UPC_COMPLETE_HANDLE

The explicit-handle non-blocking data transfer functions return a upc handle t value to represent the non-
blocking operation in flight. upc handle t is an opaque private data type whose contents are implementation-
defined, with one exception - every implementation must provide a value corresponding to an “invalid” handle
(UPC COMPLETE HANDLE) and furthermore this value must be the result of setting all the bits in the
upc handle t data type to zero. Implementors are free to define the upc handle t type to be any reasonable
and appropriate size, although they are recommended to use a type which fits within a single standard
register on the target architecture. In any case, the data type should be wide enough to express at least
216 − 1 different handle values, to prevent limiting the number of non-blocking operations in progress due to
the number of handles available.

It is legal for threads to pass upc handle t values into function callees or back to function callers. However,
upc handle t values are thread-specific. In other words, it is an error to obtain a handle value by initiating
a non-blocking operation on one thread, and later pass that handle value into a synchronization function
from a different thread.

Any explicit-handle, non-blocking initiation operation may return the value UPC COMPLETE HANDLE
to indicate that the requested operation was completed synchronously. It is always an error to discard
the upc handle t value for an explicit-handle operation in-flight - i.e. to initiate an operation and never
synchronize on its completion.

2.2 Explicit-handle non-blocking operations

upc_handle_t upc_memcpy_async(shared void *dst, shared const void *src, size_t n);
upc_handle_t upc_memget_async( void *dst, shared const void *src, size_t n);
upc_handle_t upc_memput_async(shared void *dst, const void *src, size_t n);
upc_handle_t upc_memset_async(shared void *dst, int c, size_t n);

These operations have the same semantics as the corresponding functions defined in the UPC Language
Specification section 7.2.5, except they are split-phase. The specified operation is initiated with a call to
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the above functions which return an explicit handle representing the operation in-flight. The operation is
not guaranteed to be complete until after a successful call to upc waitsync or upc trysync on the returned
handle. The contents of all affected destination memory is undefined while the operation is in-flight, and if
the contents of any source memory changes while the operation is in-flight, the result is undefined.

2.3 Explicit-handle non-blocking synchronization

void upc_waitsync(upc_handle_t handle);
int upc_trysync(upc_handle_t handle);

Synchronize on the completion of a single specified explicit-handle non-blocking operation that was initiated
by the calling thread. upc waitsync() blocks until the specified operation has completed (or returns immedi-
ately if it has already completed). In any case, the handle value is “dead” after upc waitsync() returns and
may not be passed to future synchronization operations. upc trysync() always returns immediately, with a
non-zero value if the operation is complete (at which point the handle value is “dead”, and may not be used in
future synchronization operations), or zero if the operation is not yet complete and future synchronization is
necessary to complete the corresponding operation. It is legal to pass UPC COMPLETE HANDLE
as input to these functions - upc waitsync (UPC COMPLETE HANDLE) returns immediately and
upc trysync (UPC COMPLETE HANDLE) returns non-zero. It is an error to pass a upc handle t
value (other than UPC COMPLETE HANDLE) for an operation which has already been successfully
synchronized using one of the explicit-handle synchronization functions.

Note that the order in which non-blocking operations complete is intentionally unspecified - the system is free
to coalesce and/or reorder non-blocking operations with respect to other blocking or non-blocking operations,
or operations initiated from a separate thread - the only ordering constraints that must be satisfied are those
explicitly enforced using the synchronization functions (i.e. the non-blocking operation is only guaranteed
to occur somewhere in the interval between initiation and successful synchronization on that operation).

Implementors should attempt to make the non-blocking initiation operations return as quickly as possible -
however in some cases (e.g. when a large number of non-blocking operations have been issued or the network
is otherwise busy) it may be necessary to block temporarily while waiting for the network to become available.
In any case, all implementations must support at least 216−1 non-blocking operations in-progress per thread
- that is, each thread is free to issue up to 216 − 1 non-blocking operations before issuing a sync operation,
and the implementation must handle this correctly without deadlock or livelock. Additionally, note that
non-blocking operations proceed independently of barriers and other forms of inter-thread synchronization -
these are not a substitute for upc waitsync/upc trysync.

Example: The following example demonstrates an explicitly asynchronous nearest neighbor exchange of
data. We assume a regular domain decomposition in the data array A which is blocked in shared space.
Each thread initiates a fetch of the neighbor data into local buffers, then performs independent computation
while the communication proceeds overlapped in the background.
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#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS];
double leftdata[BLKSZ];
double rightdata[BLKSZ];
upc_handle_t leftfetch_handle = UPC_COMPLETE_HANDLE;
upc_handle_t rightfetch_handle = UPC_COMPLETE_HANDLE;

if (MYTHREAD > 0) /* initiate fetch of data from left neighbor */
leftfetch_handle = upc_memget_async(leftdata, &(A[BLKSZ*(MYTHREAD-1)]), BLKSZ*sizeof(double));

if (MYTHREAD < THREADS-1) /* initiate fetch of data from right neighbor */
rightfetch_handle = upc_memget_async(rightdata, &(A[BLKSZ*(MYTHREAD+1)]), BLKSZ*sizeof(double));

/* perform some independent computations here */

upc_waitsync(leftfetch_handle); /* block for completion of communication, if necessary */
upc_waitsync(rightfetch_handle);

/* now safe to operate on leftdata and rightdata */

2.4 Multiple explicit-handle non-blocking synchronization

The following convenience functions assist in synchronizing arrays of explicit handles:

void upc_waitsync_all (upc_handle_t *ph, size_t numhandles);
int upc_trysync_all (upc_handle_t *ph, size_t numhandles);
void upc_waitsync_some(upc_handle_t *ph, size_t numhandles);
int upc_trysync_some (upc_handle_t *ph, size_t numhandles);

These functions synchronize on the completion of an array of explicit handles (all of which were created
by the calling thread). numhandles specifies the number of handles in the provided array of handles.
upc waitsync all blocks until all the specified operations have completed (or returns immediately if they
have all already completed). upc trysync all always returns immediately, with a non-zero value if all the
specified operations have completed, or a zero value if one or more of the operations is not yet complete and
future synchronization is necessary to complete some of the operations. upc waitsync some blocks until at
least one incomplete handle in the list has completed (where the incomplete handles are those which are not
UPC COMPLETE HANDLE). upc trysync some always returns immediately, with a non-zero value if
at least one incomplete handle in the provided array has completed, or a zero value if none of the incomplete
handles in the provided array has completed.

All of these functions will modify the provided array to reflect completions - handles whose operations have
completed are overwritten with the value UPC COMPLETE HANDLE, and the client may test against
this value upon return to determine which operations are complete and which are still pending.

It is legal to pass the value UPC COMPLETE HANDLE in some of the array entries, and the functions
will ignore all such entries so that they have no effect on behavior. In the case where all entries in the array
are UPC COMPLETE HANDLE or numhandles == 0, then the wait variants will return immediately
and the try variants will return immediately with a non-zero value to indicate success.
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3 Implicit-handle non-blocking bulk-contiguous operations

The following functions provide non-blocking, split-phase access to shared data. All such non-blocking
operations require an initiation (e.g., a put or get) and a subsequent synchronization on the completion of
that operation before the result is guaranteed. These are “implicit-handle” non-blocking operations because
the initiation function does not return a handle - rather, the operation becomes associated with an implicit
handle owned by the calling thread, and all implicit-handle operations are synchronized together using a call
to an implicit-handle synchronization function. These operations have the same (weak) ordering guarantees
which apply to the explicit-handle variants.

3.1 Implicit-handle non-blocking operations

void upc_memcpy_asynci(shared void *dst, shared const void *src, size_t n);
void upc_memget_asynci( void *dst, shared const void *src, size_t n);
void upc_memput_asynci(shared void *dst, const void *src, size_t n);
void upc_memset_asynci(shared void *dst, int c, size_t n);

These operations have the same semantics as the corresponding functions defined in the UPC Language
Specification section 7.2.5, except they are split-phase. The specified operation is initiated with a call to
the above functions. The operation is not guaranteed to be complete until after the next successful call
to upc waitsynci or upc trysynci made by the initiating thread (unless access region synchronization is in
effect, as explained in section 4). The contents of all affected destination memory is undefined while the
operation is in-flight, and if the contents of any source memory changes while the operation is in-flight, the
result is undefined.

3.2 Implicit-handle non-blocking synchronization

The following functions are used to synchronize implicit-handle non-blocking operations:

void upc_waitsynci();
int upc_trysynci();

These functions synchronize the set of non-blocking implicit-handle operations previously issued by the
calling thread outside any access region, and not yet synchronized through a successful implicit-handle
synchronization. upc waitsynci blocks until all operations in this set have completed (indicating these
operations have been successfully synchronized). upc trysynci tests whether all operations in the set have
completed, and returns a non-zero value if so (which indicates these operations have been successfully
synchronized) or zero otherwise (in which case none of these operations may be considered successfully
synchronized).

If there are no outstanding implicit-handle operations (i.e., the set is empty), then upc waitsynci returns
immediately, and upc trysynci returns immediately with a non-zero value to indicate success.

These functions notably do not synchronize any outstanding explicit-handle operations - those operations
proceed independently and must be synchronized using the explicit-handle synchronization functions. Be-
cause the set of operations is determined dynamically and not lexically, implicit-handle synchronization
functions can synchronize operations initiated within other function frames by the calling thread (but this
cannot affect the correctness of correctly synchronized code - at worst it oversynchronizes).

6



Example: Here is the same example from section 2.3, written using implicit-handle synchronization. The
example is semantically equivalent, but more concise as there are no explicit handles to manage.

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS];
double leftdata[BLKSZ];
double rightdata[BLKSZ];

if (MYTHREAD > 0) /* initiate fetch of data from left neighbor */
upc_memget_asynci(leftdata, &(A[BLKSZ*(MYTHREAD-1)]), BLKSZ*sizeof(double));

if (MYTHREAD < THREADS-1) /* initiate fetch of data from right neighbor */
upc_memget_asynci(rightdata, &(A[BLKSZ*(MYTHREAD+1)]), BLKSZ*sizeof(double));

/* perform some independent computations here */

upc_waitsynci(); /* block for completion of communication, if necessary */

/* now safe to operate on leftdata and rightdata */

4 Access region synchronization

In some cases, it may be useful or desirable to initiate a number of non-blocking operations (possibly without
knowing how many at compile-time) and synchronize them at a later time using a single, fast synchronization.
Simple implicit handle synchronization may not be appropriate for this situation if there are intervening
implicit accesses which are not to be synchronized. This situation could be handled using explicit-handle
non-blocking operations and upc waitsync all, but this may not be desirable because it requires managing
an array of handles (which may be inconvenient or costly when the number of operations is not known until
runtime). To handle these cases, we provide access region synchronization, described below. It provides a
useful middle ground between implicit and explicit handles in the expressiveness versus conciseness tradeoff.

4.1 Access region functions

void upc_begin_accessregion();
upc_handle_t upc_end_accessregion();

The upc begin accessregion and upc end accessregion functions are used to define an access region - any
statements which execute on the calling thread after a begin call and before the next end call are said to be
inside the region. The begin and end calls must be paired, and may not be nested or the results are undefined.
It is erroneous to call any implicit-handle synchronization function (section 3.2) inside an access region. All
implicit-handle non-blocking operations initiated inside the region by the functions in section 3.1 become
associated with the abstract access region handle being constructed. upc end accessregion returns an explicit
handle which collectively represents all the associated operations (those implicit-handle operations initiated
within the access region). This handle must later be passed to the regular explicit-handle synchronization
functions in sections 2.3 and 2.4, and will be successfully synchronized when all of the associated operations
initiated in the access region have completed. The associated operations are not synchronized by subsequent
calls to the implicit-handle synchronization functions occurring after the access region (e.g. upc waitsynci).
Explicit-handle operations initiated within the access region operate as usual and do not become associated
with the access region.
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Example: Here is the same example from section 2.3, written using an access region. The example is
semantically equivalent, but more concise as there is only one handle to manage.

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS];
double leftdata[BLKSZ];
double rightdata[BLKSZ];

upc_begin_accessregion(); // begin the access region

if (MYTHREAD > 0) /* initiate fetch of data from left neighbor */
upc_memget_asynci(leftdata, &(A[BLKSZ*(MYTHREAD-1)]), BLKSZ*sizeof(double));

if (MYTHREAD < THREADS-1) /* initiate fetch of data from right neighbor */
upc_memget_asynci(rightdata, &(A[BLKSZ*(MYTHREAD+1)]), BLKSZ*sizeof(double));

// end the access region and get the handle
upc_handle_t handle = upc_end_accessregion();

/* perform some independent computations here */

upc_waitsync(handle); /* block for completion of communication, if necessary */

/* now safe to operate on leftdata and rightdata */

Example: A more complicated example of an access region.

upc_begin_accessregion(); // begin the access region

upc_memput_asynci(...); // becomes associated with access region
while (...) {
upc_memget_asynci(...); // becomes associated with access region

}

// unrelated explicit-handle operation not associated with access region
upc_handle_t h2 = upc_memget_async(...);
upc_waitsync(h2);

// end the access region and get the handle
upc_handle_t handle = upc_end_accessregion();

.... // other code, which may include unrelated implicit or explicit handle
// operations+syncs, or other access regions, etc

// wait for all the operations associated with the access region to complete
upc_waitsync(handle);
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5 Indexed/Vector memcpy operations

The indexed memcpy functions provide a general mechanism to express an operation which gathers data from
arbitrary source regions of memory and scatters data into arbitrary destination regions of memory. Express-
ing such a data movement pattern as a single high-level operation (as opposed to many small, contiguous
operations) allows for more aggressive optimization of the data movement within the UPC implementation
- for example, tuning the transfer mechanism for maximal performance on the given memory hierarchy or
taking advantage of platform-specific scatter/gather support in network hardware. All the functions are
non-collective - they are called by a single thread to initiate an indexed memory copy transfer.

5.1 Common Requirements

The total amount of data specified by the source regions must equal the total amount of data specified by
the destination regions (although the individual regions in each list need not be of equal size). In other
words, counts and lengths in the source and destination lists need not match, so long as they both specify
the same total amount of data. The effect of the operation is that data is copied from the source regions, in
the order specified by srclist, to the destination regions, in the order specified by dstlist. Note the contents
of the destination regions is undefined while the operation is in progress (i.e. the actual order in which the
writes take place is undefined), and if the contents of the source regions change while the operation is in
progress the result is undefined.

The destination regions must be completely disjoint and must not overlap with any source regions, otherwise
the result is undefined. Source regions are permitted to overlap with each other.

If dstcount and srccount are zero, the operation is a no-op and the other arguments are ignored.

5.2 Possible Design A - List of variable-sized regions

typedef struct {
void *addr;
size_t len;

} upc_pmemvec_t;

typedef struct {
shared void *addr; // treated as a (shared [] char *) - ie. no wrapping
size_t len;

} upc_smemvec_t;

A upc pmemvec t specifies a contiguous region of local memory valid on the current thread starting at base
address addr and extending for len bytes. A upc smemvec t specifies a contiguous region of shared memory
with affinity to a single thread, starting at base address addr and extending for len bytes. In both cases len
may be zero, in which case that entry is ignored.

void upc_memcpy_vlist(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

void upc_memput_vlist(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_pmemvec_t const srclist[]);

void upc_memget_vlist(size_t dstcount, upc_pmemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);
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upc_handle_t upc_memcpy_vlist_async(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

upc_handle_t upc_memput_vlist_async(size_t dstcount, upc_smemvec_t const dstlist[],
size_t srccount, upc_pmemvec_t const srclist[]);

upc_handle_t upc_memget_vlist_async(size_t dstcount, upc_pmemvec_t const dstlist[],
size_t srccount, upc_smemvec_t const srclist[]);

• srclist and dstlist specify a list of contiguous memory regions to be used as the source and destination
for the memory transfer. Each upc smemvec t entry is permitted to specify data with affinity to a
different thread.

• srccount and dstcount indicate the number of region entries in the srclist and dstlist array, respectively.

For the async variants, the specified operation is initiated with a call to the above functions which return
an explicit handle representing the operation in-flight. The operation is not guaranteed to be complete until
after a successful call to upc waitsync or upc trysync on the returned handle. The contents of all affected
destination memory is undefined while the operation is in-flight, and if the contents of any source memory
changes while the operation is in-flight, the result is undefined. The srclist and dstlist arrays must remain
valid and unchanged until the operation is complete.

Dan’s Comments
PROS: good for specifying bounding boxes, efficiently allows packing in a contiguous buffer at either end,
allows multiple remote affinities, mirrors the UPC-IO List IO interface
CONS: bad for vectorization, high metadata space consumption, full generality provided may not map well
to more restrictive lower-level scatter/gather network layers

Example: The following example demonstrates the use of upc memget vlist (Design A) to fetch some
individual elements, a group of elements, and an entire block in a single operation into a single, contiguous
local buffer. For demonstration purposes the data was fetched from shared memory with affinity to different
threads, although this need not always be the case.

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 3 */
upc_smemvec_t srclist[] = {

{ &(A[14]), sizeof(double) }, /* element 14 (from thread 0) */
{ &(A[20]), sizeof(double) }, /* element 20 (from thread 0) */
{ &(A[100]), 50*sizeof(double) }, /* elements 100..149 (from thread 1) */
{ &(A[2*BLKSZ]), BLKSZ*sizeof(double) } /* entire block (from thread 2) */

};
double mybuf[52+BLKSZ];
upc_pmemvec_t dstlist[] = { { mybuf, sizeof(mybuf) } };

upc_memget_vlist(1, dstlist, 4, srclist);

/* compute on contents of mybuf */
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5.2.1 GASNet interface for Indexed/Vector Design A

typedef struct {
void *addr;
size_t len;

} gasnet_memvec_t;

void gasnet_putv_bulk(gasnet_node_t dstnode,
size_t dstcount, gasnet_memvec_t const dstlist[],
size_t srccount, gasnet_memvec_t const srclist[]);

void gasnet_getv_bulk(size_t dstcount, gasnet_memvec_t const dstlist[],
gasnet_node_t srcnode,
size_t srccount, gasnet_memvec_t const srclist[]);

gasnet_handle_t gasnet_putv_nb_bulk(gasnet_node_t dstnode,
size_t dstcount, gasnet_memvec_t const dstlist[],
size_t srccount, gasnet_memvec_t const srclist[]);

gasnet_handle_t gasnet_getv_nb_bulk(size_t dstcount, gasnet_memvec_t const dstlist[],
gasnet_node_t srcnode,
size_t srccount, gasnet_memvec_t const srclist[]);

void gasnet_putv_nbi_bulk(gasnet_node_t dstnode,
size_t dstcount, gasnet_memvec_t const dstlist[],
size_t srccount, gasnet_memvec_t const srclist[]);

void gasnet_getv_nbi_bulk(size_t dstcount, gasnet_memvec_t const dstlist[],
gasnet_node_t srcnode,
size_t srccount, gasnet_memvec_t const srclist[]);

These vector put/get operations operate exactly analogously to the contiguous gasnet put/get bulk functions
- ie. unaligned access is permitted and the user cannot free or modify the source data until after sync.
Additionally, the srclist/dstlist metadata input arrays must remain valid and unchanged until after sync.

Note: this GASNet interface is strictly point-to-point - only one remote node may be specified (as opposed
to the UPC level interface which allows (shared void *) addresses with arbitrary affinity). This is primarily
motivated by the fact that current network hardware support for scatter/gather does not accommodate
multi-remote-node operations, and therefore we wish to avoid a second pass over the address list within
GASNet to separate the addresses by remote node (the UPC runtime can just as easily do that during
its address translation pass). Also, other GASNet clients (such as Titanium) do not want to pay for the
additional, unneeded generality.
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5.3 Possible Design B - List of fixed-size regions

void upc_memcpy_ilist(size_t dstcount, shared void * const dstlist[], size_t dstlen,
size_t srccount, shared const void * const srclist[], size_t srclen);

void upc_memput_ilist(size_t dstcount, shared void * const dstlist[], size_t dstlen,
size_t srccount, const void * const srclist[], size_t srclen);

void upc_memget_ilist(size_t dstcount, void * const dstlist[], size_t dstlen,
size_t srccount, shared const void * const srclist[], size_t srclen);

upc_handle_t upc_memcpy_ilist_async(size_t dstcount, shared void * const dstlist[],
size_t dstlen,
size_t srccount, shared const void * const srclist[],
size_t srclen);

upc_handle_t upc_memput_ilist_async(size_t dstcount, shared void * const dstlist[],
size_t dstlen,
size_t srccount, const void * const srclist[],
size_t srclen);

upc_handle_t upc_memget_ilist_async(size_t dstcount, void * const dstlist[],
size_t dstlen,
size_t srccount, shared const void * const srclist[],
size_t srclen);

These functions copy data elements as srccount contiguous regions of memory with fixed length srclen from
base addresses srclist[0]...srclist[srccount − 1], and place the data as into contiguous regions of memory
with length dstlen at base addresses dstlist[0]...dstlist[dstcount− 1].

• srclist and dstlist specify a list of element addresses be used as the source and destination for the
memory transfer. Each entry is permitted to specify data with affinity to a different thread.

• srccount and dstcount indicate the number of elements in the srclist and dstlist array, respectively.

• srclen and dstlen specify the length in bytes for each contiguous region referenced by srclist and
dstlist. The two need not be equal, but must both be greater than zero.

For the async variants, the specified operation is initiated with a call to the above functions which return
an explicit handle representing the operation in-flight. The operation is not guaranteed to be complete until
after a successful call to upc waitsync or upc trysync on the returned handle. The contents of all affected
destination memory is undefined while the operation is in-flight, and if the contents of any source memory
changes while the operation is in-flight, the result is undefined. The srclist and dstlist arrays must remain
valid and unchanged until the operation is complete.

Dan’s Comments
PROS: minimizes metadata space overhead, allows multiple remote affinities, efficiently allows packing in
a contiguous buffer at either end
CONS: can’t efficiently handle different-sized regions in a single operation, some platforms may perform
badly when srclen and dstlen are unequal.
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Example: The following example demonstrates the use of upc memget ilist (Design B) to fetch some
individual elements into a single, contiguous local buffer. For demonstration purposes the data was fetched
from shared memory with affinity to different threads, although this need not always be the case. Note that
each region of source memory in a single operation is constrained to be the same size (although it needn’t
match the underlying element size). The most concise way to fetch many regions of different sizes with this
interface is to use a separate operation for each region size (and possibly use asynchronous operations to
improve concurrency).

#define BLKSZ 100
shared [BLKSZ] double A[BLKSZ*THREADS]; /* assume THREADS >= 2 */
shared void * srclist[] = {

&(A[14]), &(A[15]), &(A[16]), /* element 14..16 (from thread 0) */
&(A[100]), &(A[110]) /* element 100 and 110 (from thread 1) */

};
double mybuf[5];
void * dstlist[] = { &mybuf };

upc_memget_ilist(1, dstlist, 5*sizeof(double),
5, srclist, sizeof(double));

/* compute on contents of mybuf */

5.3.1 GASNet interface for Indexed/Vector Design B

void gasnet_puti_bulk(gasnet_node_t dstnode,
size_t dstcount, void * const dstlist[], size_t dstlen,
size_t srccount, void * const srclist[], size_t srclen);

void gasnet_geti_bulk(size_t dstcount, void * const dstlist[], size_t dstlen,
gasnet_node_t srcnode,
size_t srccount, void * const srclist[], size_t srclen);

gasnet_handle_t
gasnet_puti_nb_bulk(gasnet_node_t dstnode,

size_t dstcount, void * const dstlist[], size_t dstlen,
size_t srccount, void * const srclist[], size_t srclen);

gasnet_handle_t
gasnet_geti_nb_bulk(size_t dstcount, void * const dstlist[], size_t dstlen,

gasnet_node_t srcnode,
size_t srccount, void * const srclist[], size_t srclen);

void gasnet_puti_nbi_bulk(gasnet_node_t dstnode,
size_t dstcount, void * const dstlist[], size_t dstlen,
size_t srccount, void * const srclist[], size_t srclen);

void gasnet_geti_nbi_bulk(size_t dstcount, void * const dstlist[], size_t dstlen,
gasnet_node_t srcnode,
size_t srccount, void * const srclist[], size_t srclen);

These indexed put/get operations operate exactly analogously to the contiguous gasnet put/get bulk func-
tions - ie. unaligned access is permitted and the user cannot free or modify source data until after sync.
Additionally, the srclist/dstlist metadata input arrays must remain valid and unchanged until after sync.
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6 Strided memcpy

The strided memcpy functions are a special case of the indexed memcpy functions, with an interface spe-
cialized for efficiently expressing copies of arbitrary rectangular sections of dense multi-dimensional arrays.
All the functions are non-collective - they are called by a single thread to initiate a strided memory copy
transfer.

6.1 Possible Design A - fixed region size/stride (2-d rectangular array section)

This design option has a relatively simple but restrictive interface - operating on fixed size regions (chunks),
with a single fixed stride through linear memory between each chunk.

void upc_memcpy_fstrided(shared void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,
shared void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

void upc_memput_fstrided(shared void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,

void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

void upc_memget_fstrided( void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,
shared void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

upc_handle_t upc_memcpy_fstrided_async(shared void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,
shared void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

upc_handle_t upc_memput_fstrided_async(shared void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,

void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

upc_handle_t upc_memget_fstrided_async( void *dstaddr, size_t dstchunklen,
size_t dstchunkstride, size_t dstchunkcount,
shared void *srcaddr, size_t srcchunklen,
size_t srcchunkstride, size_t srcchunkcount);

• srcaddr and dstaddr base addresses for the source and destination regions, treated as a (shared [] char
*) - ie. no wrapping

• srcchunklen and dstchunklen length of each chunk in bytes

• srcchunkstride and dstchunkstride number of bytes between the start of each chunk (must be >=
chunklen)

• srcchunkcount and dstchunkcount number of chunks

The total data length in the source and destination must be equal, i.e., srcchunklen ∗ srcchunkcount ==
dstchunklen ∗ dstchunkcount. If the source locations overlap any destination locations, the result is unde-
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fined. If srcchunklen ∗ srcchunkcount and dstchunklen ∗ dstchunkcount are zero, the operation is a no-op
and the other arguments are ignored.

For the async variants, the specified operation is initiated with a call to the above functions which return
an explicit handle representing the operation in-flight. The operation is not guaranteed to be complete until
after a successful call to upc waitsync or upc trysync on the returned handle. The contents of all affected
destination memory is undefined while the operation is in-flight, and if the contents of any source memory
changes while the operation is in-flight, the result is undefined.

Dan’s Comments
PROS: simplicity of interface arguments, regular sparse access, efficiently allows packing in a contiguous
buffer at either end, compact metadata, allows the copied region and underlying arrays to differ in shape at
the source and destination
CONS: lacks generality - unable to retrieve an arbitrary rectangular array section in more than two dimen-
sions
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Figure 1: Example of upc memcpy fstrided, Design A
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6.2 Possible Design B - N-d rectangular array section

void upc_memcpy_strided(shared void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void upc_memput_strided(shared void *dstaddr, const size_t dststrides[],
const void *srcaddr, const size_t srcstrides[],

const size_t count[], size_t stridelevels);
void upc_memget_strided( void *dstaddr, const size_t dststrides[],

shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

upc_handle_t upc_memcpy_strided_async(shared void *dstaddr, const size_t dststrides[],
shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

upc_handle_t upc_memput_strided_async(shared void *dstaddr, const size_t dststrides[],
const void *srcaddr, const size_t srcstrides[],

const size_t count[], size_t stridelevels);
upc_handle_t upc_memget_strided_async( void *dstaddr, const size_t dststrides[],

shared const void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

• srcaddr Source starting address of the data block to copy, treated as a (shared [] char *) (i.e., no
wrapping).

• srcstrides Source array of positive stride distances in bytes to move along each dimension. (stridelevels
entries)

• dstaddr Destination starting address of the data block to receive the copy, treated as a (shared [] char
*) (i.e., no wrapping).

• dststrides Destination array of positive stride distances in bytes to move along each dimension.
(stridelevels entries)

• count Slice size in each dimension. count[0] should be the number of bytes of contiguous data in the
leading (rightmost) dimension. (stridelevels + 1 entries)

• stridelevels The level of strides (for an N-d array copy, one generally sets stridelevels == (N − 1)).

If the source locations overlap any destination locations, the result is undefined. If stridelevels is zero,
the operation is a contiguous copy of count[0] bytes, and the srcstrides and dststrides arguments are
ignored. If any entry in count[0..stridelevels] is zero, the operation is a no-op and the other arguments are
ignored. The dimensional strides in srcstrides and dststrides must be monotonically increasing and must
not specify overlapping locations - more specifically, srcstrides[0] ≥ count[0] ∧ ∀i ∈ [1..(stridelevels −
1)] | srcstrides[i] ≥ (count[i] ∗ srcstrides[i− 1]), and accordingly for dststrides.

For the async variants, the specified operation is initiated with a call to the above functions which return
an explicit handle representing the operation in-flight. The operation is not guaranteed to be complete until
after a successful call to upc waitsync or upc trysync on the returned handle. The contents of all affected
destination memory is undefined while the operation is in-flight, and if the contents of any source memory
changes while the operation is in-flight, the result is undefined. The srcstrides, dststrides, and count arrays
must remain valid and unchanged until the operation is complete.
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Dan’s Comments
PROS: fully general - can take an arbitrary rectangular section from a dense rectangular array of any
dimensionality, efficiently allows packing in a contiguous buffer at either end, allows the underlying arrays
to differ in shape at the source and destination
CONS: interface complexity may intimidate novice users, does not allow the copied region to differ in shape
at the source and destination (i.e., the rectangular section being copied must have the same extents in N-d
space at either end)
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Example: To put a 3-d block of data, shaped 2x3x4, starting at location (5, 6, 7) in A to B in location (8,
9, 10), the arguments to upc memput strided can be set as follows:

double A[11][12][13]; /* local array */
shared [] double B[14][15][16]; /* remote array */

void * srcaddr;
shared void * dstaddr;
size_t count[3];
size_t stridelevels;

srcaddr = &(A[5][6][7]);
srcstrides[0] = 13 * sizeof(double); /* stride in bytes for the rightmost dimension */
srcstrides[1] = 12 * 13 * sizeof(double); /* stride in bytes for the middle dimension */
dstaddr = &(B[8][9][10]);
dststrides[0] = 16 * sizeof(double); /* stride in bytes for the rightmost dimension */
dststrides[1] = 15 * 16 * sizeof(double); /* stride in bytes for the middle dimension */
count[0] = 4 * sizeof(double); /* number of bytes of contiguous data (width in rightmost dimension) */
count[1] = 3; /* width in middle dimension */
count[2] = 2; /* width in leftmost dimension */
stridelevels = 2;

upc_memput_strided(srcaddr, dststrides, dstaddr, srcstrides, count, stridelevels);
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Figure 2: Illustration of a 3-d upc memput strided (Design B), and the in-memory data layout of the source
or destination
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6.2.1 GASNet interface for Strided Design B

void gasnet_puts_bulk(gasnet_node_t dstnode,
void *dstaddr, const size_t dststrides[],
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void gasnet_gets_bulk(void *dstaddr, const size_t dststrides[],
gasnet_node_t srcnode,
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

gasnet_handle_t gasnet_puts_nb_bulk(gasnet_node_t dstnode,
void *dstaddr, const size_t dststrides[],
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

gasnet_handle_t gasnet_gets_nb_bulk(void *dstaddr, const size_t dststrides[],
gasnet_node_t srcnode,
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void gasnet_puts_nbi_bulk(gasnet_node_t dstnode,
void *dstaddr, const size_t dststrides[],
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

void gasnet_gets_nbi_bulk(void *dstaddr, const size_t dststrides[],
gasnet_node_t srcnode,
void *srcaddr, const size_t srcstrides[],
const size_t count[], size_t stridelevels);

These strided put/get operations operate exactly analogously to the contiguous gasnet put/get bulk func-
tions - ie. unaligned access is permitted and the user cannot free or modify the source data until after sync.
Additionally, the srcstrides, dststrides, and count metadata input arrays must remain valid and unchanged
until after sync.

If the source locations overlap any destination locations, the result is undefined. If stridelevels is zero,
the operation is a contiguous copy of count[0] bytes, and the srcstrides and dststrides arguments are
ignored. If any entry in count[0..stridelevels] is zero, the operation is a no-op and the other arguments are
ignored. The dimensional strides in srcstrides and dststrides must be monotonically increasing and must
not specify overlapping locations - more specifically, srcstrides[0] ≥ count[0] ∧ ∀i ∈ [1..(stridelevels −
1)] | srcstrides[i] ≥ (count[i] ∗ srcstrides[i− 1]), and accordingly for dststrides.
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7 Appendix: Open Issues and Possible Extensions

1. Non-collective reblocking shared data movement
Consider providing non-collective memcpy mechanisms that directly support operating over a dis-
tributed array.

Nothing in UPC currently provides a way to directly express non-collective automatic reblocking of
arrays (i.e., allow a single thread to request shuffling of data to change the effective blocking factor
of an array, especially for gathering to/from an indefinitely blocked array), although this seems like
something we should eventually explore.

Note that although it’s not entirely elegant, one certainly can use the proposed scatter/gather functions
to do the required communication in a single operation, ie:

/* assuming indexed memcpy design A */
shared [BLKSZ] double A[NUMELEM];
double localA[NUMELEM];
upc_pmemvec_t dst = { &localA, NUMELEM*sizeof(double) };
upc_smemvec_t myvec[THREADS];
for (int i=0; i < THREADS; i++) {
myvec[i].addr = &A[BLKSZ*i];
myvec[i].len = upc_affinitysize(NUMELEM*sizeof(double),

BLKSZ*sizeof(double), i);
}
upc_memget_vlist(1, dst, THREADS, myvec);

The code above gathers the pieces of the A array with affinity to each thread into a single, private
contiguous buffer using a single operation (and orders them in the buffer by former thread affinity). If
NUMELEM > BLKSZ ∗ THREADS (i.e., the blocks wrap around back to thread 0) and we want
the data ordered by block number, we can use a slightly longer loop, that should still perform well for
reasonably large block sizes:

/* assuming indexed memcpy design A */
shared [BLKSZ] double A[NUMELEM];
double localA[NUMELEM];
upc_pmemvec_t dst = { &localA, NUMELEM*sizeof(double) };
upc_smemvec_t myvec[NUMELEM/BLKSZ + 1];
shared [BLKSZ] double *p = A;
for (int i=0; i < NUMELEM/BLKSZ; i++) {
myvec[i].addr = p;
myvec[i].len = BLKSZ*sizeof(double);
p += BLKSZ;

}
int leftoverelems = (&A[NUMELEM]-p);
if (leftoverelems > 0) {
myvec[i].addr = p;
myvec[i].len = leftoverelems*sizeof(double);
i++;

}
upc_memget_vlist(1, dst, i, myvec);

Note the same approaches also easily work under indexed memcpy design B (fixed-width regions) when
NUMELEMS%BLKSZ == 0 (and otherwise can be made to work with one additional separate
memget of the left-over elements in the final partial block).
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2. Consider supporting strided source/destination that spans affinities
Currently the entire source region of a strided operation must have affinity to a single thread (and
similarly for the destination region). If we ever add direct support for non-collective reblocking data
movement, we might also consider extending the strided operations to work over distributed arrays
(i.e., take a blocksize parameter as input). However, the strided interface is already quite high on the
complexity scale, and this extension may scare off additional users. Furthermore, adding a blocksize
parameter to the strided interface significantly complicates the pointer arithmetic in the implementation
of the general block-distributed case, reducing performance (at least for that case) and increasing the
testing/development burden of implementation.

3. Consider allowing reshaping N-d strided transfers
The N-d strided interface (i.e., design B) does not allow the copied region to differ in shape at the source
and destination (i.e., the rectangular section being copied must have the same extents in N-d space at
either end). Note the interface does permit the underlying N-d arrays to differ in their dimensions, and
it does efficiently allow transfers to/from a contiguous buffer at either end. However, it does not allow
one to take the elements from an arbitrary N-d rectangular section at the source and shuffle them into
an arbitrary N-d rectangular section of different shape (and equal volume) at the destination. The
interface could be adapted to support this (bizarre?) usage by splitting the count array into srccount
and dstcount (adding to the complexity of the interface and implementation) but it was perceived that
there was no demand for the additional generality.

4. Remote completion (target notification)
In some algorithms, one may want the ability to initiate a point-to-point non-blocking operation and
allow the target thread (rather than the initiator) to synchronize on the completion of the operation.
However, it’s unclear how such an interface would look for UPC or even if it’s consistent with UPC’s
general philosophy of one-sided communication through globally shared memory with logical affinity
(since such a primitive is really just send/recv two-sided message passing in disguise - the only significant
difference being that the initiator provides all the relevant memory addresses).

5. Explicitly non-blocking UPC collectives and IO
All the collective and IO functions could be enhanced with handle-based non-blocking versions. Be-
cause these functions are collective, this should be done with a different collective handle type (e.g.,
upc all handle t) and corresponding collective synchronizations functions (e.g., upc all waitsync /
upc all trysync).

6. Consider relaxing the required lifetime of the input metadata arrays
Currently the async UPC functions that take metadata input (e.g., address lists) in array form require
those metadata arrays to remain unchanged until the operation has been successfully synchronized.
This decision was motivated by the desire to provide the greatest freedom to implementors - this
guarantee may allow an implementation to avoid copying the metadata inputs, and therefore provide
better performance. The user is already required to ensure the source data remains unchanged while the
operation is in progress (again, to avoid requiring synchronous copying overhead in the async initiation
functions), so it doesn’t seem overly burdensome to additionally require the metadata arrays to remain
unchanged until the async operation has been synchronized. However, if this becomes problematic
for applications in practice, then we could consider relaxing the lifetime requirement for the metadata
arrays.

7. Clean up the limit on the number of outstanding async operations
We basically want a limit which is guaranteed to be high enough such that application writers and
code generators never have to worry about it (ie firmly disallow implementations that provide some
paltry amount, like four non-blocking operations), but clearly an unbounded number of outstanding
operations is not efficiently supportable (due to handle representation constraints, if nothing else).
We may want to provide a compile-time constant defined by the implementation (e.g., UPC MAX-
ASY NC INFLIGHT ) that specifies a per-thread limit on how many async operations are permitted
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to be in-flight (unsynced) at any given time, and furthermore require all implementations to provide a
value UPC MAX ASY NC INFLIGHT >= 216 − 1.

8. Provide a transpose operation
The monotonicity restrictions on the contents of srcstrides/dststrides in the strided API (design B)
effectively imply that one cannot transpose the dimensions of the copied region during a strided copy
using this interface. Given that transpose is a frequently-used operation (and one that may need
to be done to/from remote memory), it may be worthwhile to add a version of the strided interface
which allows one to specify a transpositional strided copy. This should be a separate function for
documentation reasons (it’s conceptually different than copy) and because efficient implementations are
likely to differ considerably from the non-transpositional case. In addition to relaxing the monotonicity
property, we’d also want to add one more element to the srcstrides/dststrides array so the user can
explicitly indicate the dimension with unit-stride contiguity (in the current interface, the lowest order
dimension always has an implicit stride of 1, which is not true in a transpositional copy). If we choose to
provide this extension, we may additionally consider allowing negative stride values, which would cause
the transposition to execute a negative injection on the index space (i.e., values would be “reflected”
across a dimension, effectively “flipping over” the values in the rows along the given direction).

9. Provide wrappers for 2-d and 3-d strided copy
Given that 2-d and 3-d arrays are so commonly used, we could provide wrapper functions around the
strided copy (design B) function which take all the necessary parameters as values and construct the
metadata expected by the general N-d strided copy function. There would be some overhead associated
with the wrapper (especially if the metadata lifetime requirement remains unchanged), but it would
provide a simpler interface for less sophisticated users.

10. Consider adding multi-remote-node scatter-gather API to GASNet
To provide the conduit with higher-level information about ongoing operations, possibly allowing more
intelligent messaging decisions. This would need to outweigh the significant performance penalties
associated with the increase in metadata size, and the additional scanning/sorting/copying of the
metadata required in the implementation under this design. It also seems likely that a more general
implementation approach to improving messaging decisions (i.e., an asynchronous agent or queue that
facilitates cross-operation optimizations) is likely to provide better total performance and would obviate
any perceived performance motivation for such an interface extension. In any case, we can easily extend
the API with multi-remote-node flavors of each function in the future if empirical evidence reveals a
significant net advantage.
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